Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Neurosci Biobehav Rev ; 158: 105535, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38191080

RESUMEN

Face-selective regions in the human ventral occipito-temporal cortex (VOTC) have been defined for decades mainly with functional magnetic resonance imaging. This face-selective VOTC network is traditionally divided in a posterior 'core' system thought to subtend face perception, and regions of the anterior temporal lobe as a semantic memory component of an extended general system. In between these two putative systems lies the anterior fusiform gyrus and surrounding sulci, affected by magnetic susceptibility artifacts. Here we suggest that this methodological gap overlaps with and contributes to a conceptual gap between (visual) perception and semantic memory for faces. Filling this gap with intracerebral recordings and direct electrical stimulation reveals robust face-selectivity in the anterior fusiform gyrus and a crucial role of this region, especially in the right hemisphere, in identity recognition for both familiar and unfamiliar faces. Based on these observations, we propose an integrated theoretical framework for human face (identity) recognition according to which face-selective regions in the anterior fusiform gyrus join the dots between posterior and anterior cortical face memories.


Asunto(s)
Reconocimiento Facial , Prosopagnosia , Humanos , Lóbulo Temporal/fisiología , Reconocimiento Facial/fisiología , Reconocimiento en Psicología , Imagen por Resonancia Magnética , Reconocimiento Visual de Modelos/fisiología , Mapeo Encefálico/métodos , Estimulación Luminosa
3.
Brain Sci ; 13(2)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36831897

RESUMEN

Understanding how the human brain recognizes faces is a primary scientific goal in cognitive neuroscience. Given the limitations of the monkey model of human face recognition, a key approach in this endeavor is the recording of electrophysiological activity with electrodes implanted inside the brain of human epileptic patients. However, this approach faces a number of challenges that must be overcome for meaningful scientific knowledge to emerge. Here we synthesize a 10 year research program combining the recording of intracerebral activity (StereoElectroEncephaloGraphy, SEEG) in the ventral occipito-temporal cortex (VOTC) of large samples of participants and fast periodic visual stimulation (FPVS), to objectively define, quantify, and characterize the neural basis of human face recognition. These large-scale studies reconcile the wide distribution of neural face recognition activity with its (right) hemispheric and regional specialization and extend face-selectivity to anterior regions of the VOTC, including the ventral anterior temporal lobe (VATL) typically affected by magnetic susceptibility artifacts in functional magnetic resonance imaging (fMRI). Clear spatial dissociations in category-selectivity between faces and other meaningful stimuli such as landmarks (houses, medial VOTC regions) or written words (left lateralized VOTC) are found, confirming and extending neuroimaging observations while supporting the validity of the clinical population tested to inform about normal brain function. The recognition of face identity - arguably the ultimate form of recognition for the human brain - beyond mere differences in physical features is essentially supported by selective populations of neurons in the right inferior occipital gyrus and the lateral portion of the middle and anterior fusiform gyrus. In addition, low-frequency and high-frequency broadband iEEG signals of face recognition appear to be largely concordant in the human association cortex. We conclude by outlining the challenges of this research program to understand the neural basis of human face recognition in the next 10 years.

4.
Neuropsychologia ; 177: 108424, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36400243

RESUMEN

Decoding emotions on others' faces is one of the most important functions of the human brain, which has been widely studied in cognitive neuroscience. However, the precise time course of facial expression categorization in the human brain is still a matter of debate. Here we used an original paradigm to measure categorical perception of facial expression changes during event-related potentials (ERPs) recording, in which a face stimulus dynamically switched either to a different expression (between-category condition) or to the same expression (within-category condition), the physical distance between the two successive faces being equal across conditions. The switch between faces generated a negative differential potential peaking at around 160 ms over occipito-temporal regions, similar in term of latency and topography to the well-known face-selective N170 component. This response was larger in the condition where the switch occurred between faces that were perceived as having different facial expressions compared to the same expression. In addition, happy expressions were categorized around 20 ms faster than fearful expressions (respectively, 135 and 156 ms). These findings provide evidence that changes of facial expressions are categorically perceived as early as 160 ms following stimulus onset over the occipito-temporal cortex.


Asunto(s)
Expresión Facial , Reconocimiento Facial , Humanos , Potenciales Evocados/fisiología , Emociones/fisiología , Encéfalo/fisiología , Percepción , Electroencefalografía , Reconocimiento Facial/fisiología
5.
Elife ; 112022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36074548

RESUMEN

In vivo intracranial recordings of neural activity offer a unique opportunity to understand human brain function. Intracranial electrophysiological (iEEG) activity related to sensory, cognitive or motor events manifests mostly in two types of signals: event-related local field potentials in lower frequency bands (<30 Hz, LF) and broadband activity in the higher end of the frequency spectrum (>30 Hz, High frequency, HF). While most current studies rely exclusively on HF, thought to be more focal and closely related to spiking activity, the relationship between HF and LF signals is unclear, especially in human associative cortex. Here, we provide a large-scale in-depth investigation of the spatial and functional relationship between these 2 signals based on intracranial recordings from 121 individual brains (8000 recording sites). We measure category-selective responses to complex ecologically salient visual stimuli - human faces - across a wide cortical territory in the ventral occipito-temporal cortex (VOTC), with a frequency-tagging method providing high signal-to-noise ratio (SNR) and the same objective quantification of signal and noise for the two frequency ranges. While LF face-selective activity has higher SNR across the VOTC, leading to a larger number of significant electrode contacts especially in the anterior temporal lobe, LF and HF display highly similar spatial, functional, and timing properties. Specifically, and contrary to a widespread assumption, our results point to nearly identical spatial distribution and local spatial extent of LF and HF activity at equal SNR. These observations go a long way towards clarifying the relationship between the two main iEEG signals and reestablish the informative value of LF iEEG to understand human brain function.


Asunto(s)
Corteza Cerebral , Electroencefalografía , Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Humanos , Lóbulo Temporal/fisiología
6.
Brain Struct Funct ; 226(9): 3031-3049, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34370091

RESUMEN

The extent to which faces and written words share neural circuitry in the human brain is actively debated. Here, we compare face-selective and word-selective responses in a large group of patients (N = 37) implanted with intracerebral electrodes in the ventral occipito-temporal cortex (VOTC). Both face-selective (i.e., significantly different responses to faces vs. non-face visual objects) and word-selective (i.e., significantly different responses to words vs. pseudofonts) neural activity is isolated with frequency-tagging. Critically, this sensitive approach allows to objectively quantify category-selective neural responses and disentangle them from general visual responses. About 70% of significant electrode contacts show either face-selectivity or word-selectivity only, with the expected right and left hemispheric dominance, respectively. Spatial dissociations are also found within core regions of face and word processing, with a medio-lateral dissociation in the fusiform gyrus (FG) and surrounding sulci, respectively. In the 30% of overlapping face- and word-selective contacts across the VOTC or in the FG and surrounding sulci, between-category-selective amplitudes (faces vs. words) show no-to-weak correlations, despite strong correlations in both the within-category-selective amplitudes (face-face, word-word) and the general visual responses to words and faces. Overall, these observations support the view that category-selective circuitry for faces and written words is largely dissociated in the human adult VOTC.


Asunto(s)
Mapeo Encefálico , Lóbulo Temporal , Adulto , Cabeza , Humanos , Reconocimiento Visual de Modelos , Estimulación Luminosa
7.
Neuroimage ; 221: 117174, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32682990

RESUMEN

Rapid individuation of conspecifics' faces is ecologically important in the human species, whether the face belongs to a familiar or unfamiliar individual. Here we tested a large group (N = 69) of epileptic patients implanted with intracerebral electrodes throughout the ventral occipito-temporal cortex (VOTC). We used a frequency-tagging visual stimulation paradigm optimized to objectively measure face individuation with direct neural recordings. This enabled providing an extensive map of the significantly larger neural responses to upright than to inverted unfamiliar faces, i.e. reflecting visual face individuation processes that go beyond physical image differences. These high-level face individuation responses are both distributed and anatomically confined to a strip of cortex running from the inferior occipital gyrus all along the lateral fusiform gyrus, with a large right hemispheric dominance. Importantly, face individuation responses are limited anteriorly to the bilateral anterior fusiform gyrus and surrounding sulci, with a near absence of significant responses in the extensively sampled temporal pole. This large-scale mapping provides original evidence that face individuation is supported by a distributed yet anatomically constrained population of neurons in the human VOTC, and highlights the importance of probing this function with face stimuli devoid of associated semantic, verbal and affective information.


Asunto(s)
Mapeo Encefálico , Electrocorticografía , Reconocimiento Facial/fisiología , Red Nerviosa/fisiología , Lóbulo Occipital/fisiología , Lóbulo Temporal/fisiología , Adulto , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/fisiopatología , Femenino , Humanos , Masculino , Reconocimiento en Psicología/fisiología
8.
Cereb Cortex ; 30(11): 5988-6003, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32583847

RESUMEN

Repeated stimulus presentations commonly produce decreased neural responses-a phenomenon known as repetition suppression (RS) or adaptation-in ventral temporal cortex (VTC) of humans and nonhuman primates. However, the temporal features of RS in human VTC are not well understood. To fill this gap in knowledge, we utilized the precise spatial localization and high temporal resolution of electrocorticography (ECoG) from nine human subjects implanted with intracranial electrodes in the VTC. The subjects viewed nonrepeated and repeated images of faces with long-lagged intervals and many intervening stimuli between repeats. We report three main findings: 1) robust RS occurs in VTC for activity in high-frequency broadband (HFB), but not lower-frequency bands; 2) RS of the HFB signal is associated with lower peak magnitude (PM), lower total responses, and earlier peak responses; and 3) RS effects occur early within initial stages of stimulus processing and persist for the entire stimulus duration. We discuss these findings in the context of early and late components of visual perception, as well as theoretical models of repetition suppression.


Asunto(s)
Electrocorticografía/métodos , Habituación Psicofisiológica/fisiología , Lóbulo Temporal/fisiología , Percepción Visual/fisiología , Adaptación Fisiológica/fisiología , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino
9.
Front Psychiatry ; 11: 332, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411029

RESUMEN

Individuals with autism spectrum disorder (ASD) have difficulties with social communication and interaction. The social motivation hypothesis states that a reduced interest in social stimuli may partly underlie these difficulties. Thus far, however, it has been challenging to quantify individual differences in social orientation and interest, and to pinpoint the neural underpinnings of it. In this study, we tested the neural sensitivity for social versus non-social information in 21 boys with ASD (8-12 years old) and 21 typically developing (TD) control boys, matched for age and IQ, while children were engaged in an orthogonal task. We recorded electroencephalography (EEG) during fast periodic visual stimulation (FPVS) of social versus non-social stimuli to obtain an objective implicit neural measure of relative social bias. Streams of variable images of faces and houses were superimposed, and each stream of stimuli was tagged with a particular presentation rate (i.e., 6 and 7.5 Hz or vice versa). This frequency-tagging method allows disentangling the respective neural responses evoked by the different streams of stimuli. Moreover, by using superimposed stimuli, we controlled for possible effects of preferential looking, spatial attention, and disengagement. Based on four trials of 60 s, we observed a significant three-way interaction. In the control group, the frequency-tagged neural responses to faces were larger than those to houses, especially in lateral occipito-temporal channels, while the responses to houses were larger over medial occipital channels. In the ASD group, however, faces and houses did not elicit significantly different neural responses in any of the regions. Given the short recording time of the frequency-tagging paradigm with multiple simultaneous inputs and the robustness of the individual responses, the method could be used as a sensitive marker of social preference in a wide range of populations, including younger and challenging populations.

10.
Cereb Cortex ; 30(7): 4026-4043, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32301963

RESUMEN

We report a comprehensive mapping of the human ventral occipito-temporal cortex (VOTC) for selective responses to frequency-tagged faces or landmarks (houses) presented in rapid periodic trains of objects, with intracerebral recordings in a large sample (N = 75). Face-selective contacts are three times more numerous than house-selective contacts and show a larger amplitude, with a right hemisphere advantage for faces. Most importantly, these category-selective contacts are spatially dissociated along the lateral-to-medial VOTC axis, respectively, consistent with neuroimaging evidence. At the minority of "overlap" contacts responding selectively to both faces and houses, response amplitude to the two categories is not correlated, suggesting a contribution of distinct populations of neurons responding selectively to each category. The medio-lateral dissociation also extends into the underexplored anterior temporal lobe (ATL). In this region, a relatively high number of intracerebral recording contacts show category-exclusive responses (i.e., without any response to baseline visual objects) to faces but rarely to houses, in line with the proposed role of this region in processing people-related semantic information. Altogether, these observations shed novel insight on the neural basis of human visual recognition and strengthen the validity of the frequency-tagging approach coupled with intracerebral recordings in epileptic patients to understand human brain function.


Asunto(s)
Reconocimiento Facial/fisiología , Lóbulo Occipital/fisiología , Lóbulo Temporal/fisiología , Adulto , Mapeo Encefálico , Epilepsia Refractaria , Electrocorticografía , Femenino , Humanos , Masculino , Reconocimiento Visual de Modelos/fisiología , Adulto Joven
11.
Hum Brain Mapp ; 41(9): 2373-2388, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32237021

RESUMEN

Despite being of primary importance for fundamental research and clinical studies, the relationship between local neural population activity and scalp electroencephalography (EEG) in humans remains largely unknown. Here we report simultaneous scalp and intracerebral EEG responses to face stimuli in a unique epileptic patient implanted with 27 intracerebral recording contacts in the right occipitotemporal cortex. The patient was shown images of faces appearing at a frequency of 6 Hz, which elicits neural responses at this exact frequency. Response quantification at this frequency allowed to objectively relate the neural activity measured inside and outside the brain. The patient exhibited typical 6 Hz responses on the scalp at the right occipitotemporal sites. Moreover, there was a clear spatial correspondence between these scalp responses and intracerebral signals in the right lateral inferior occipital gyrus, both in amplitude and in phase. Nevertheless, the signal measured on the scalp and inside the brain at nearby locations showed a 10-fold difference in amplitude due to electrical insulation from the head. To further quantify the relationship between the scalp and intracerebral recordings, we used an approach correlating time-varying signals at the stimulation frequency across scalp and intracerebral channels. This analysis revealed a focused and right-lateralized correspondence between the scalp and intracerebral recordings that were specific to the face stimulation is more broadly distributed in various control situations. These results demonstrate the interest of a frequency tagging approach in characterizing the electrical propagation from brain sources to scalp EEG sensors and in identifying the cortical sources of brain functions from these recordings.


Asunto(s)
Electrodos Implantados , Electroencefalografía , Reconocimiento Facial/fisiología , Lóbulo Occipital/fisiología , Lóbulo Temporal/fisiología , Adulto , Electrocorticografía , Epilepsia/fisiopatología , Femenino , Humanos , Estimulación Luminosa
12.
Cortex ; 125: 135-148, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31982699

RESUMEN

Developmental accounts of autism spectrum disorder (ASD) state that infants and children with ASD are spontaneously less attracted by and less proficient in processing social stimuli such as faces. This is hypothesized to partly underlie social communication difficulties in ASD. While in some studies a reduced preference for social stimuli has been shown in individuals with ASD, effect sizes are moderate and vary across studies, stimuli, and designs. Eye tracking, often the methodology of choice to study social preference, conveys information about overt orienting processes but conceals covert attention, possibly resulting in an underestimation of the effects. In this study, we recorded eye tracking and electroencephalography (EEG) during fast periodic visual stimulation to address this issue. We tested 21 boys with ASD (8-12 years old) and 21 typically developing (TD) control boys, matched for age and IQ. Streams of variable images of faces were presented at 6 Hz alongside images of houses presented at 7.5 Hz or vice versa, while children were engaged in an orthogonal task. While frequency-tagged neural responses were larger in response to faces than simultaneously presented houses in both groups, this effect was much larger in TD boys than in boys with ASD. This group difference in saliency of social versus non-social processing is significant after 5 sec of stimulus presentation and holds throughout the entire trial. Although there was no interaction between group and stimulus category for simultaneously recorded eye-tracking data, eye tracking and EEG measures were strongly correlated. We conclude that frequency-tagging EEG, allowing monitoring of both overt and covert processes, provides a fast, objective and reliable measure of decreased preference for social information in ASD.


Asunto(s)
Trastorno del Espectro Autista , Atención , Niño , Electroencefalografía , Tecnología de Seguimiento Ocular , Humanos , Lactante , Masculino , Estimulación Luminosa
14.
Hum Brain Mapp ; 40(5): 1403-1418, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30421570

RESUMEN

The sudden onset of a face image leads to a prominent face-selective response in human scalp electroencephalographic (EEG) recordings, peaking 170 ms after stimulus onset at occipito-temporal (OT) scalp sites: the N170 (or M170 in magnetoencephalography). According to a widely held view, the main cortical source of the N170 lies in the fusiform gyrus (FG), whereas the posteriorly located inferior occipital gyrus (IOG) would rather generate earlier face-selective responses. Here, we report neural responses to upright and inverted faces recorded in a unique patient using multicontact intracerebral electrodes implanted in the right IOG and in the OT sulcus above the right lateral FG (LFG). Simultaneous EEG recordings on the scalp identified the N170 over the right OT scalp region. The latency and amplitude of this scalp N170 were correlated at the single-trial level with the N170 recorded in the lateral IOG, close to the scalp lateral occipital surface. In addition, a positive component maximal around the latency of the N170 (a P170) was prominent above the internal LFG, whereas this region typically generates an N170 (or "N200") over its external/ventral surface. This suggests that electrophysiological responses in the LFG manifest as an equivalent dipole oriented mostly along the vertical axis with likely minimal projection to the lateral OT scalp region. Altogether, these observations provide evidence that the IOG is a major cortical generator of the face-selective scalp N170, qualifying the potential contribution of the FG and questioning a strict serial spatiotemporal organization of the human cortical face network.


Asunto(s)
Electroencefalografía , Potenciales Evocados Visuales/fisiología , Lóbulo Occipital/fisiología , Adulto , Mapeo Encefálico , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/cirugía , Estimulación Eléctrica , Electrodos Implantados , Cara , Femenino , Humanos , Red Nerviosa/fisiología , Reconocimiento en Psicología/fisiología , Cuero Cabelludo
15.
Neuroimage Clin ; 21: 101613, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30522972

RESUMEN

BACKGROUND: Individuals with autism spectrum disorder (ASD) are characterized by impairments in social communication and interaction. Although difficulties at processing social signals from the face in ASD have been observed and emphasized for many years, there is a lot of inconsistency across both behavioral and neural studies. METHODS: We recorded scalp electroencephalography (EEG) in 23 8-to-12 year old boys with ASD and 23 matched typically developing boys using a fast periodic visual stimulation (FPVS) paradigm, providing objective (i.e., frequency-tagged), fast (i.e., few minutes) and highly sensitive measures of rapid face categorization, without requiring any explicit face processing task. We tested both the sensitivity to rapidly (i.e., at a glance) categorize faces among other objects and to individuate unfamiliar faces. OUTCOMES: While general neural synchronization to the visual stimulation and neural responses indexing generic face categorization were undistinguishable between children with ASD and typically developing controls, neural responses indexing individual face discrimination over the occipito-temporal cortex were substantially reduced in the individuals with ASD. This difference vanished when faces were presented upside-down, due to the lack of significant face inversion effect in ASD. INTERPRETATION: These data provide original evidence for a selective high-level impairment in individual face discrimination in ASD in an implicit task. The objective and rapid assessment of this function opens new perspectives for ASD diagnosis in clinical settings.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Encéfalo/fisiopatología , Discriminación en Psicología/fisiología , Reconocimiento Facial/fisiología , Niño , Electroencefalografía , Humanos , Masculino , Estimulación Luminosa
16.
Proc Natl Acad Sci U S A ; 115(32): E7595-E7604, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30038000

RESUMEN

We report a comprehensive cartography of selective responses to visual letters and words in the human ventral occipito-temporal cortex (VOTC) with direct neural recordings, clarifying key aspects of the neural basis of reading. Intracerebral recordings were performed in a large group of patients (n = 37) presented with visual words inserted periodically in rapid sequences of pseudofonts, nonwords, or pseudowords, enabling classification of responses at three levels of word processing: letter, prelexical, and lexical. While letter-selective responses are found in much of the VOTC, with a higher proportion in left posterior regions, prelexical/lexical responses are confined to the middle and anterior sections of the left fusiform gyrus. This region overlaps with and extends more anteriorly than the visual word form area typically identified with functional magnetic resonance imaging. In this region, prelexical responses provide evidence for populations of neurons sensitive to the statistical regularity of letter combinations independently of lexical responses to familiar words. Despite extensive sampling in anterior ventral temporal regions, there is no hierarchical organization between prelexical and lexical responses in the left fusiform gyrus. Overall, distinct word processing levels depend on neural populations that are spatially intermingled rather than organized according to a strict postero-anterior hierarchy in the left VOTC.


Asunto(s)
Mapeo Encefálico/métodos , Electrocorticografía/métodos , Lóbulo Occipital/fisiología , Reconocimiento Visual de Modelos/fisiología , Lóbulo Temporal/fisiología , Adulto , Mapeo Encefálico/instrumentación , Epilepsia Refractaria/diagnóstico , Electrocorticografía/instrumentación , Electrodos , Epilepsias Parciales/diagnóstico , Femenino , Humanos , Masculino , Lectura
17.
Ann N Y Acad Sci ; 2018 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-29479704

RESUMEN

The neural basis of face categorization has been widely investigated with functional magnetic resonance imaging (fMRI), identifying a set of face-selective local regions in the ventral occipitotemporal cortex (VOTC). However, indirect recording of neural activity with fMRI is associated with large fluctuations of signal across regions, often underestimating face-selective responses in the anterior VOTC. While direct recording of neural activity with subdural grids of electrodes (electrocorticography, ECoG) or depth electrodes (stereotactic electroencephalography, SEEG) offers a unique opportunity to fill this gap in knowledge, these studies rather reveal widely distributed face-selective responses. Moreover, intracranial recordings are complicated by interindividual variability in neuroanatomy, ambiguity in definition, and quantification of responses of interest, as well as limited access to sulci with ECoG. Here, we propose to combine SEEG in large samples of individuals with fast periodic visual stimulation to objectively define, quantify, and characterize face categorization across the whole VOTC. This approach reconciles the wide distribution of neural face categorization responses with their (right) hemispheric and regional specialization, and reveals several face-selective regions in anterior VOTC sulci. We outline the challenges of this research program to understand the neural basis of face categorization and high-level visual recognition in general.

18.
Cereb Cortex ; 27(8): 4106-4123, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27578496

RESUMEN

Detecting brief changes of facial expression is vital for social communication. Yet, how reliably, how fast these changes are detected and how long they are processed in the human brain remain unknown. High-density electroencephalogram (EEG) was recorded in 18 participants presented with a neutral-expression face at a rate of 5.88 Hz (F) for 80 s. Every five faces, the face changed expression to fear, disgust or happiness (different stimulation sequences). The resulting 1.18 Hz (F/5) EEG response and its harmonics objectively indexed detection of a brief change of facial expression. This response was recorded in every participant in a few minutes but was largely reduced for inverted faces, indicating that it reflects high-level processes. Although this response focused on occipito-temporal sites, different expression changes evoked reliably distinct topographical maps, pointing to partly distinct neural generators. These effects were also observed at a faster 12 Hz frequency rate and a lower ratio of expression change (1/9). Time-domain analysis showed that a brief change of expression inserted in a dynamic stimulation sequence elicits specific occipito-temporal responses between 100 and 310 ms, indicating a rapid change detection process followed by a long integration period of facial expression information in the human brain.


Asunto(s)
Encéfalo/fisiología , Emociones/fisiología , Reconocimiento Facial/fisiología , Adulto , Electroencefalografía , Potenciales Evocados Visuales , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Estimulación Luminosa/métodos , Procesamiento de Señales Asistido por Computador , Percepción Social , Factores de Tiempo , Adulto Joven
19.
J Neurosci ; 36(32): 8425-40, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27511014

RESUMEN

UNLABELLED: Human face perception requires a network of brain regions distributed throughout the occipital and temporal lobes with a right hemisphere advantage. Present theories consider this network as either a processing hierarchy beginning with the inferior occipital gyrus (occipital face area; IOG-faces/OFA) or a multiple-route network with nonhierarchical components. The former predicts that removing IOG-faces/OFA will detrimentally affect downstream stages, whereas the latter does not. We tested this prediction in a human patient (Patient S.P.) requiring removal of the right inferior occipital cortex, including IOG-faces/OFA. We acquired multiple fMRI measurements in Patient S.P. before and after a preplanned surgery and multiple measurements in typical controls, enabling both within-subject/across-session comparisons (Patient S.P. before resection vs Patient S.P. after resection) and between-subject/across-session comparisons (Patient S.P. vs controls). We found that the spatial topology and selectivity of downstream ipsilateral face-selective regions were stable 1 and 8 month(s) after surgery. Additionally, the reliability of distributed patterns of face selectivity in Patient S.P. before versus after resection was not different from across-session reliability in controls. Nevertheless, postoperatively, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1 of the resected hemisphere. Diffusion weighted imaging in Patient S.P. and controls identifies white matter tracts connecting retinotopic areas to downstream face-selective regions, which may contribute to the stable and plastic features of the face network in Patient S.P. after surgery. Together, our results support a multiple-route network of face processing with nonhierarchical components and shed light on stable and plastic features of high-level visual cortex following focal brain damage. SIGNIFICANCE STATEMENT: Brain networks consist of interconnected functional regions commonly organized in processing hierarchies. Prevailing theories predict that damage to the input of the hierarchy will detrimentally affect later stages. We tested this prediction with multiple brain measurements in a rare human patient requiring surgical removal of the putative input to a network processing faces. Surprisingly, the spatial topology and selectivity of downstream face-selective regions are stable after surgery. Nevertheless, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1. White matter connections from outside the face network may support these stable and plastic features. As processing hierarchies are ubiquitous in biological and nonbiological systems, our results have pervasive implications for understanding the construction of resilient networks.


Asunto(s)
Mapeo Encefálico , Epilepsia/patología , Cara , Reconocimiento Visual de Modelos/fisiología , Corteza Visual/fisiopatología , Vías Visuales/fisiopatología , Adulto , Electroencefalografía , Epilepsia/diagnóstico por imagen , Epilepsia/etiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neoplasias Neuroepiteliales/complicaciones , Neoplasias Neuroepiteliales/diagnóstico por imagen , Pruebas Neuropsicológicas , Oxígeno/sangre , Reproducibilidad de los Resultados , Corteza Visual/diagnóstico por imagen , Campos Visuales/fisiología , Adulto Joven
20.
Proc Natl Acad Sci U S A ; 113(28): E4088-97, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27354526

RESUMEN

Human neuroimaging studies have identified a network of distinct face-selective regions in the ventral occipito-temporal cortex (VOTC), with a right hemispheric dominance. To date, there is no evidence for this hemispheric and regional specialization with direct measures of brain activity. To address this gap in knowledge, we recorded local neurophysiological activity from 1,678 contact electrodes implanted in the VOTC of a large group of epileptic patients (n = 28). They were presented with natural images of objects at a rapid fixed rate (six images per second: 6 Hz), with faces interleaved as every fifth stimulus (i.e., 1.2 Hz). High signal-to-noise ratio face-selective responses were objectively (i.e., exactly at the face stimulation frequency) identified and quantified throughout the whole VOTC. Face-selective responses were widely distributed across the whole VOTC, but also spatially clustered in specific regions. Among these regions, the lateral section of the right middle fusiform gyrus showed the largest face-selective response by far, offering, to our knowledge, the first supporting evidence of two decades of neuroimaging observations with direct neural measures. In addition, three distinct regions with a high proportion of face-selective responses were disclosed in the right ventral anterior temporal lobe, a region that is undersampled in neuroimaging because of magnetic susceptibility artifacts. A high proportion of contacts responding only to faces (i.e., "face-exclusive" responses) were found in these regions, suggesting that they contain populations of neurons involved in dedicated face-processing functions. Overall, these observations provide a comprehensive mapping of visual category selectivity in the whole human VOTC with direct neural measures.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/fisiología , Reconocimiento Facial/fisiología , Adulto , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...