Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microb Ecol ; 77(2): 460-470, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30607437

RESUMEN

Moisture and temperature play important roles in the assembly and functioning of prokaryotic communities in soil. However, how moisture and temperature regulate the function of niche- versus neutral-based processes during the assembly of these communities has not been examined considering both the total microbial community and the sole active portion with potential for growth in native subtropical grassland. We set up a well-controlled microcosm-based experiment to investigate the individual and combined effects of moisture and temperature on soil prokaryotic communities by simulating subtropical seasons in grassland. The prokaryotic populations with potential for growth and the total prokaryotic community were assessed by 16S rRNA transcript and 16S rRNA gene analyses, respectively. Moisture was the major factor influencing community diversity and structure, with a considerable effect of this factor on the total community. The prokaryotic populations with potential for growth and the total communities were influenced by the same assembly rules, with the niche-based mechanism being more influential in communities under dry condition. Our results provide new information regarding moisture and temperature in microbial communities of soil and elucidate how coexisting prokaryotic populations, under different physiological statuses, are shaped in native subtropical grassland soil.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiología del Suelo , Suelo/química , Agua/análisis , Bacterias/clasificación , Bacterias/genética , Biodiversidad , ADN Bacteriano/genética , Pradera , Filogenia , ARN Ribosómico 16S/genética , Temperatura , Agua/metabolismo
2.
Braz. j. microbiol ; 48(1): 101-108, Jan.-Mar. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-839340

RESUMEN

Abstract Production of a bioherbicide for biological control of weeds requires a series of steps, from selection of a suitable microbial strain to final formulation. Thus, this study aimed to select fungi for production of secondary metabolites with herbicidal activity using biological resources of the Brazilian Pampa biome. Phytopathogenic fungi were isolated from infected tissues of weeds in the Pampa biome. A liquid synthetic culture medium was used for production of metabolites. The phytotoxicity of fungal metabolites was assessed via biological tests using the plant Cucumis sativus L., and the most promising strain was identified by molecular analysis. Thirty-nine fungi were isolated, and 28 presented some phytotoxic symptoms against the target plant. Fungus VP51 belonging to the genus Diaporthe showed the most pronounced herbicidal activity. The Brazilian Pampa biome is a potential resource for the development of new and sustainable chemical compounds for modern agriculture.


Asunto(s)
Productos Biológicos/metabolismo , Hongos/metabolismo , Herbicidas/metabolismo , Filogenia , Brasil , ARN Ribosómico 5.8S/genética , ADN Intergénico , Malezas/microbiología , Fermentación , Hongos/aislamiento & purificación , Hongos/clasificación , Hongos/genética
3.
Braz J Microbiol ; 48(1): 101-108, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27769882

RESUMEN

Production of a bioherbicide for biological control of weeds requires a series of steps, from selection of a suitable microbial strain to final formulation. Thus, this study aimed to select fungi for production of secondary metabolites with herbicidal activity using biological resources of the Brazilian Pampa biome. Phytopathogenic fungi were isolated from infected tissues of weeds in the Pampa biome. A liquid synthetic culture medium was used for production of metabolites. The phytotoxicity of fungal metabolites was assessed via biological tests using the plant Cucumis sativus L., and the most promising strain was identified by molecular analysis. Thirty-nine fungi were isolated, and 28 presented some phytotoxic symptoms against the target plant. Fungus VP51 belonging to the genus Diaporthe showed the most pronounced herbicidal activity. The Brazilian Pampa biome is a potential resource for the development of new and sustainable chemical compounds for modern agriculture.


Asunto(s)
Productos Biológicos/metabolismo , Hongos/metabolismo , Herbicidas/metabolismo , Brasil , ADN Intergénico , Fermentación , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Filogenia , Malezas/microbiología , ARN Ribosómico 5.8S/genética
4.
Curr Microbiol ; 58(6): 628-34, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19319602

RESUMEN

Lack of attention to soil and microbial characteristics that influence PAHs degradation has been a leading cause of failures in isolation of efficient PAH degraders and bioaugumentation processes with microbial consortia. This study compared the classic method of isolation of PAHs-degraders with a modified method employing a pre-enrichment respirometric analysis. The modified enrichment of PAH degrading microorganisms using in vitro microcosm resulted to reduced enrichment period and more efficient PAH-degrading microbial consortia. Results indicate that natural soils with strong heterotrophic microbial activity determined through pre-enrichment analysis, are better suited for the isolation of efficient PAH degrading microorganisms with significant reduction of the enrichment period.


Asunto(s)
Antracenos/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Microbiología del Suelo , Bacterias/genética , Biodegradación Ambiental , ADN Bacteriano/genética , ADN Ribosómico/genética , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Contaminantes del Suelo/metabolismo
5.
Braz. j. microbiol ; 39(2): 353-356, Apr.-June 2008. graf
Artículo en Inglés | LILACS | ID: lil-487717

RESUMEN

In this work we investigated the structure of the iron-stimulated surface tension reducing substances produced by P. citronellolis 222A isolated from a 17-years old landfarming used for sludge treatment in petrochemical industries and oil refinery. Its mass spectrum differs from P. aeruginosa spectrum, indicating that the surface tension reducing substances produced by P. citronellolis can be a new kind of biosurfactant.


Neste trabalho é apresentado um estudo a respeito da análise da estrutura de substâncias redutoras de tensão superficial produzidas por Pseudomonas citronellolis 222A estimulado pela presença de ferro. Esta bactéria foi isolada de um solo que há 17 anos vem sendo utilizado para o tratamento de borra oleosa proveniente da indústria petroquímica e de refinaria de petróleo. O espectro de massa difere do espectro de P. aeruginosa, indicando que as substâncias redutoras de tensão superficial produzidas por P. citronellolis podem ser um novo tipo de biosurfactante.


Asunto(s)
Técnicas In Vitro , Microbiología Industrial , Hierro , Espectrometría de Masas , Pseudomonas/aislamiento & purificación , Suelo , Métodos , Industria del Petróleo y Gas
6.
Bioresour Technol ; 99(7): 2637-43, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17572084

RESUMEN

In this study we evaluated the capacity of a defined microbial consortium (five bacteria: Mycobacterium fortuitum, Bacillus cereus, Microbacterium sp., Gordonia polyisoprenivorans, Microbacteriaceae bacterium, Naphthalene-utilizing bacterium; and a fungus identified as Fusarium oxysporum) isolated from a PAHs contaminated landfarm site to degrade and mineralize different concentrations (0, 250, 500 and 1000 mg kg(-1)) of anthracene, phenanthrene and pyrene in soil. PAHs degradation and mineralization was evaluated by gas chromatography and respirometry, respectively. The microbial consortium degraded on average, 99%, 99% and 96% of the different concentrations of anthracene, phenanthrene and pyrene in the soil, in 70 days, respectively. This consortium mineralized 78%, on average, of the different concentrations of the 3 PAHs in soil after 70 days. Contrarily, the autochthonous soil microbial population showed no substantial mineralization of the PAHs. Bacterial and fungal isolates from the consortium, when inoculated separately to the soil, were less effective in anthracene mineralization compared to the consortium. This signifies synergistic promotion of PAHs mineralization by mixtures of the monoculture isolates (the microbial consortium).


Asunto(s)
Compuestos Policíclicos/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
7.
Bioresour Technol ; 99(7): 2644-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17572085

RESUMEN

Iron may enhance polycyclic aromatic hydrocarbons (PAHs) degradation directly by increasing the activity of the enzymes involved in the aerobic biodegradation pathways for hydrocarbons, and indirectly by increasing the PAHs bioavailability due to the stimulation of biosurfactant production. In the present work, the PAH anthracene was used in order to study the effect of different forms and concentrations of iron on its biodegradation and surfactant production by Pseudomonas spp. isolates from a 14-years old petrochemical sludge landfarm site. Among the iron forms, iron nitrate was chosen based on its high solubility and effect on the increase in the growth of the isolate. Iron concentration of 0.1mM was selected as the limit between deficiency and toxicity for isolates growth and anthracene degradation. After 48 days Pseudomonas citronellolis isolate 222A degraded 72% of anthracene related to iron stimulation and surface tension decrease, indicating surfactant production. Pseudomonas aeruginosa isolate 332C was iron-stimulated but did not reduce surface tension while P. aeruginosa isolate 312A exhibited a noniron and surfactant dependence to degrade 72% of anthracene. Isolate 222A showed a direct dependence on iron to stimulate surfactant activity, which probably increased anthracene bioavailability. To our knowledge, this is the first report about the iron effect on anthracene degradation and surfactant production by a Pseudomonas sp. Based on the iron requirement and surfactant activity, the Pseudomonas isolates may be useful for bioremediation of PAHs.


Asunto(s)
Antracenos/metabolismo , Hierro/metabolismo , Pseudomonas/metabolismo , Contaminantes del Suelo/metabolismo
8.
Braz J Microbiol ; 39(2): 353-6, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24031229

RESUMEN

In this work we investigated the structure of the iron-stimulated surface tension reducing substances produced by P. citronellolis 222A isolated from a 17-years old landfarming used for sludge treatment in petrochemical industries and oil refinery. Its mass spectrum differs from P. aeruginosa spectrum, indicating that the surface tension reducing substances produced by P. citronellolis can be a new kind of biosurfactant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA