Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biophotonics ; 16(8): e202300055, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37029650

RESUMEN

This study used Raman spectroscopy to develop a new approach to evaluate the effects of solar radiation on the stratum corneum (SC). The method measures the SC's hydration and dehydration kinetics by calculating the vOH/vCH ratio to monitor the relative water content during the drying process. The study also investigated the role of skin surface lipids (SSLs) in protecting the SC from solar radiation. The SSLs film is a complex mixture of free fatty acids, triglycerides, wax esters, squalene, free and esterified cholesterols, that play a crucial role in the skin's barrier function. The results showed that solar radiation alters the water content and balance within the SC, and SSLs provide protection by acting as an optical filter by absorbing some of the energy of the solar light. This is confirmed by high temperature gas chromatography coupled to mass spectrometry analyses by revealing a decrease in specific lipids after irradiating the SSLs .


Asunto(s)
Epidermis , Piel , Triglicéridos , Agua , Escualeno/análisis , Escualeno/farmacología
2.
Anal Sci Adv ; 4(9-10): 293-301, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38715594

RESUMEN

Triglycerides (TGs) are one of the main components of the glycerolipid family. Their main task in cells is to store excess fatty acids. TG energy storage is mainly concentrated in adipocytes. TGs and free fatty acids constitute the majority (57.5%) of the skin surface lipids (SSLs). TGs are essential for the formation of the skin water barrier. This work is the second part of a global study that aims to evaluate the effect of solar radiations on SSLs using vibrational spectroscopy. In the first part of this work, a stepwise characterization of free fatty acids was performed, and different spectral descriptors were used to follow the different structural modifications during the photo-oxidation process, that is hydrogen abstraction, formation of hydroperoxides and peroxyl radicals as primary oxidation products and the formation of aldehydes, ketones, alcohol as secondary products. In this second part, the photo-oxidation of TGs was evaluated using Raman spectroscopy. A decrease in the CH2/CH3 stretching bands ratio that confirmed the hydrogen abstraction, an increase in the 1165/1740 cm-1 ((δ(OH) and υ(C-O))/ν(C=O) (ester)) ratio indicated the formation of secondary oxidation products such as hydroperoxides. And finally, an increase in the 1725/1740 cm-1 (υ(C=O) (ald.)/υ(C=O) (ester)) ratio and the trans ν(C=C)/cis ν(C=C) ratio highlighted the formation of aldehydes, alcohols, ketone, trans secondary products and others.

3.
J Appl Toxicol ; 41(10): 1553-1567, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33594739

RESUMEN

We used TissUse's HUMIMIC Chip2 microfluidic model, incorporating reconstructed skin models and liver spheroids, to investigate the impact of consumer-relevant application scenarios on the metabolic fate of the hair dye, 4-amino-2-hydroxytoluene (AHT). After a single topical or systemic application of AHT to Chip2 models, medium was analysed for parent and metabolites over 5 days. The metabolic profile of a high dose (resulting in a circuit concentration of 100 µM based on 100% bioavailability) of AHT was the same after systemic and topical application to 96-well EpiDerm™ models. Additional experiments indicated that metabolic capacity of EpiDerm™ models were saturated at this dose. At 2.5 µM, concentrations of AHT and several of its metabolites differed between application routes. Topical application resulted in a higher Cmax and a 327% higher area under the curve (AUC) of N-acetyl-AHT, indicating a first-pass effect in the EpiDerm™ models. In accordance with in vivo observations, there was a concomitant decrease in the Cmax and AUC of AHT-O-sulphate after topical, compared with systemic application. A similar alteration in metabolite ratios was observed using a 24-well full-thickness skin model, EpiDermFT™, indicating that a first-pass effect was also possible to detect in a more complex model. In addition, washing the EpiDermFT™ after 30 min, thus reflecting consumer use, decreased the systemic exposure to AHT and its metabolites. In conclusion, the skin-liver Chip2 model can be used to (a) recapitulate the first-pass effect of the skin and alterations in the metabolite profile of AHT observed in vivo and (b) provide consumer-relevant data regarding leave-on/rinse-off products.


Asunto(s)
Compuestos de Anilina/metabolismo , Compuestos de Anilina/toxicidad , Cresoles/metabolismo , Cresoles/toxicidad , Tinturas para el Cabello/metabolismo , Tinturas para el Cabello/toxicidad , Hígado/metabolismo , Piel/metabolismo , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Humanos , Hígado/efectos de los fármacos , Técnicas de Cultivo de Órganos , Piel/efectos de los fármacos
4.
Toxicol In Vitro ; 72: 105051, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33188879

RESUMEN

Parabens are alkyl esters of 4-hydroxybenzoic acid (4-HBA), with short-chain parabens used as antimicrobials in cosmetics. We investigated the impact of chain structure on skin and liver metabolism. Incubations with primary human hepatocytes and human liver S9 indicated that methyl-, ethyl-, propyl- and butylparaben were rapidly metabolized to similar metabolites, including 4-HBA plus the corresponding alcohols. Liver and EpiSkin™ S9 were used to investigate the metabolism of 16 short and long straight- and branched-chain parabens. The rate of hydrolysis generally decreased with increasing chain length in liver S9, whereas the reverse was true for EpiSkin™ S9. Chain length also correlated with the number of metabolites, with more oxidized metabolites detected from longer chain parabens. The identity of the alcohol group impacted metabolism the most, in terms of the rate of metabolism and the contribution of cofactors. The majority of parabens (13/16) exhibited high plasma protein binding (PPB) (>90%); whereas, 4-HBA PPB was 38%. PPB was related to the LogP of the parabens. In conclusion, the major and common paraben metabolite in PHH, liver S9 and EpiSkin™ S9 was 4-HBA. The rate of metabolism, type of metabolite and contribution of hydrolysis was tissue-specific (liver, skin) and was influenced by the chain length (and hence LogP), structural isomeric form (straight vs branched), and/or the identity of the alkyl group. SHORT ABSTRACT: We investigated how the chain structure of parabens affects their metabolism by liver and EpiSkin™ S9. The major and common metabolite in primary human hepatocytes, liver S9 and EpiSkin™ S9 was 4-HBA plus the corresponding alcohols. The rate of metabolism, type of metabolite and contribution of hydrolysis was tissue-specific and influenced by the chain length, structural isomeric form (straight vs branched), and/or the identity of the alkyl group. Most parabens exhibited high PPB (>90%), whereas the PPB of 4-HBA was 38%.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Parabenos/farmacología , Conservadores Farmacéuticos/farmacología , Piel/metabolismo , Células Cultivadas , Femenino , Humanos , Hidrólisis , Técnicas In Vitro , Masculino , Modelos Biológicos , Estructura Molecular , Parabenos/química , Conservadores Farmacéuticos/química , Unión Proteica
5.
J Appl Toxicol ; 40(3): 416-433, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31912921

RESUMEN

The abundance of xenobiotic metabolizing enzymes (XMEs) is different in the skin and liver; therefore, it is important to differentiate between liver and skin metabolism when applying the information to safety assessment of topically applied ingredients in cosmetics. Here, we have employed EpiSkin™ S9 and human liver S9 to investigate the organ-specific metabolic stability of 47 cosmetic-relevant chemicals. The rank order of the metabolic rate of six chemicals in primary human hepatocytes and liver S9 matched relatively well. XME pathways in liver S9 were also present in EpiSkin S9; however, the rate of metabolism tended to be lower in the latter. It was possible to rank chemicals into low-, medium- and high-clearance chemicals and compare rates of metabolism across chemicals with similar structures. The determination of the half-life for 21 chemicals was affected by one or more factors such as spontaneous reaction with cofactors or non-specific binding, but these technical issues could be accounted for in most cases. There were seven chemicals that were metabolized by liver S9 but not by EpiSkin S9: 4-amino-3-nitrophenol, resorcinol, cinnamyl alcohol and 2-acetylaminofluorene (slowly metabolized); and cyclophosphamide, benzophenone, and 6-methylcoumarin. These data support the use of human liver and EpiSkin S9 as screening assays to indicate the liver and skin metabolic stability of a chemical and to allow for comparisons across structurally similar chemicals. Moreover, these data can be used to estimate the systemic bioavailability and clearance of chemicals applied topically, which will ultimately help with the safety assessment of cosmetics ingredients.


Asunto(s)
Cosméticos/metabolismo , Microsomas Hepáticos/enzimología , Piel/enzimología , Administración Cutánea , Biotransformación , Cosméticos/administración & dosificación , Cosméticos/toxicidad , Humanos , Medición de Riesgo
6.
J Appl Toxicol ; 40(2): 313-326, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31701564

RESUMEN

An understanding of the bioavailability of topically applied cosmetics ingredients is key to predicting their local skin and systemic toxicity and making a safety assessment. We investigated whether short-term incubations with S9 from the reconstructed epidermal skin model, EpiSkin™, would give an indication of the rate of chemical metabolism and produce similar metabolites to those formed in incubations with human skin explants. Both have advantages: EpiSkin™ S9 is a higher-throughput assay, while the human skin explant model represents a longer incubation duration (24 hours) model integrating cutaneous distribution with metabolite formation. Here, we compared the metabolism of 10 chemicals (caffeine, vanillin, cinnamyl alcohol, propylparaben, 4-amino-3-nitrophenol, resorcinol, 4-chloroaniline, 2-amino-3-methyl-3H-imidazo[4,5-F]quinoline and 2-acetyl aminofluorene) in both models. Both models were shown to have functional Phase 1 and 2 enzymes, including cytochrome P450 activities. There was a good concordance between the models with respect to the level of metabolism (stable vs. slowly vs. extensively metabolized chemicals) and major early metabolites produced for eight chemicals. Discordant results for two chemicals were attributed to a lack of the appropriate cofactor (NADP+ ) in S9 incubations (cinnamyl alcohol) and protein binding influencing chemical uptake in skin explants (4-chloroaniline). These data support the use of EpiSkin™ S9 as a screening assay to provide an initial indication of the metabolic stability of a chemical applied topically. If required, chemicals that are not metabolized by EpiSkin™ S9 can be tested in longer-term incubations with in vitro human explant skin to determine whether it is slowly metabolized or not metabolized at all.


Asunto(s)
Células Cultivadas/efectos de los fármacos , Cosméticos/metabolismo , Cosméticos/toxicidad , Pruebas de Irritación de la Piel/métodos , Piel/efectos de los fármacos , Acetofenonas/metabolismo , Acetofenonas/toxicidad , Compuestos de Anilina/metabolismo , Compuestos de Anilina/toxicidad , Animales , Benzaldehídos/metabolismo , Benzaldehídos/toxicidad , Bencilaminas/metabolismo , Bencilaminas/toxicidad , Cafeína/metabolismo , Humanos , Parabenos/metabolismo , Parabenos/toxicidad , Ácidos Pentanoicos/metabolismo , Ácidos Pentanoicos/toxicidad , Propanoles/metabolismo , Propanoles/toxicidad , Resorcinoles/metabolismo , Resorcinoles/toxicidad
7.
J Appl Toxicol ; 40(3): 403-415, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31867769

RESUMEN

OECD test guideline 428 compliant protocol using human skin was used to test the penetration of 56 cosmetic-relevant chemicals. The penetration of finite doses (10 µL/cm2 ) of chemicals was measured over 24 hours. The dermal delivery (DD) (amount in the epidermis, dermis and receptor fluid [RF]) ranged between 0.03 ± 0.02 and 72.61 ± 8.89 µg/cm2 . The DD of seven chemicals was comparable with in vivo values. The DD was mainly accounted for by the amount in the RF, although there were some exceptions, particularly of low DD chemicals. While there was some variability due to cell outliers and donor variation, the overall reproducibility was very good. As six chemicals had to be applied in 100% ethanol due to low aqueous solubility, we compared the penetration of four chemicals with similar physicochemical properties applied in ethanol and phosphate-buffered saline. Of these, the DD of hydrocortisone was the same in both solvents, while the DD of propylparaben, geraniol and benzophenone was lower in ethanol. Some chemicals displayed an infinite dose kinetic profile; whereas, the cumulative absorption of others into the RF reflected the finite dosing profile, possibly due to chemical volatility, total absorption, chemical precipitation through vehicle evaporation or protein binding (or a combination of these). These investigations provide a substantial and consistent set of skin penetration data that can help improve the understanding of skin penetration, as well as improve the prediction capacity of in silico skin penetration models.


Asunto(s)
Cosméticos/metabolismo , Absorción Cutánea , Piel/metabolismo , Administración Cutánea , Adulto , Anciano , Cosméticos/administración & dosificación , Etanol/química , Femenino , Humanos , Cinética , Masculino , Persona de Mediana Edad , Solubilidad , Solventes/química , Adulto Joven
8.
Skin Pharmacol Physiol ; 32(3): 117-124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30889606

RESUMEN

BACKGROUND: We tested the cutaneous distribution of 50 chemicals in frozen human skin. The mass balance (MB) values for 48% of the chemicals were < 90%, possibly due to evaporation. METHODS: We confirmed the reduction in MB was due to evaporation for two chemicals tested in skin penetration experiments using a carbon filter above the skin to trap airborne chemical. An in vitro assay was used to predict the reduction in MB due to evaporation by comparing the recovery of chemicals after 4 h of incubation at room temperature in open and closed vials. RESULTS: Evaporative losses in vitro correlated well with measured MBs (i.e., < 90%) in skin penetration experiments (R2 = 0.81). There was a correlation of the MB with the vapour pressure (VP) which could be used to group chemicals according to their likelihood to evaporate during the course of a skin penetration study. There was also a correlation of MB with Henry's law constants, melting and boiling points. CONCLUSION: Our data support the use of a quick and simple test for volatility to account for the loss of MB in skin penetration experiment due to volatility. The best parameter to indicate the potential of a chemical to evaporate is the VP.


Asunto(s)
Bioensayo/métodos , Preparaciones Farmacéuticas/química , Adulto , Anciano , Carbono/química , Femenino , Congelación , Humanos , Masculino , Persona de Mediana Edad , Preparaciones Farmacéuticas/análisis , Piel/metabolismo , Absorción Cutánea , Temperatura de Transición , Presión de Vapor , Volatilización , Adulto Joven
9.
Toxicol In Vitro ; 50: 137-146, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29499337

RESUMEN

When performing safety assessment of chemicals, the evaluation of their systemic toxicity based only on non-animal approaches is a challenging objective. The Safety Evaluation Ultimately Replacing Animal Test programme (SEURAT-1) addressed this question from 2011 to 2015 and showed that further research and development of adequate tools in toxicokinetic and toxicodynamic are required for performing non-animal safety assessments. It also showed how to implement tools like thresholds of toxicological concern (TTCs) and read-across in this context. This paper shows a tiered scientific workflow and how each tier addresses the four steps of the risk assessment paradigm. Cosmetics Europe established its Long Range Science Strategy (LRSS) programme, running from 2016 to 2020, based on the outcomes of SEURAT-1 to implement this workflow. Dedicated specific projects address each step of this workflow, which is introduced here. It tackles the question of evaluating the internal dose when systemic exposure happens. The applicability of the workflow will be shown through a series of case studies, which will be published separately. Even if the LRSS puts the emphasis on safety assessment of cosmetic relevant chemicals, it remains applicable to any type of chemical.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Pruebas de Toxicidad/métodos , Animales , Cosméticos , Europa (Continente) , Humanos , Investigación , Medición de Riesgo/métodos
10.
Skin Pharmacol Physiol ; 30(5): 234-245, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28746940

RESUMEN

BACKGROUND: The Cosmetics Europe ADME Task Force is developing in vitro and in silico tools for predicting skin and systemic concentrations after topical application of cosmetic ingredients. There are conflicting reports as to whether the freezing process affects the penetration of chemicals; therefore, we evaluated whether the storage of human skin used in our studies (8-12 weeks at -20°C) affected the penetration of model chemicals. METHODS: Finite doses of trans-cinnamic acid (TCA), benzoic acid (BA), and 6-methylcoumarin (6MC) (non-volatile, non-protein reactive and metabolically stable in skin) were applied to fresh and thawed frozen skin from the same donors. The amounts of chemicals in different skin compartments were analysed after 24 h. RESULTS: Although there were some statistical differences in some parameters for 1 or 2 donors, the penetration of TCA, BA, and 6MC was essentially the same in fresh and frozen skin, i.e., there were no biologically relevant differences in penetration values. Statistical differences that were evident indicated that penetration was marginally lower in frozen than in fresh skin, indicating that the barrier function of the skin was not lost. CONCLUSION: The penetration of the 3 chemicals was essentially unaffected by freezing the skin at -20°C for up to 12 weeks.


Asunto(s)
Cosméticos/farmacocinética , Criopreservación , Preservación de Órganos , Absorción Cutánea , Piel , Adulto , Ácido Benzoico/farmacocinética , Cinamatos/farmacocinética , Cumarinas/farmacocinética , Femenino , Congelación , Humanos , Técnicas In Vitro , Persona de Mediana Edad
11.
Skin Pharmacol Physiol ; 30(2): 55-65, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28278501

RESUMEN

BACKGROUND: Information is lacking on the dermal penetration of topically applied formulations on in vitro skin models, under conditions where the stratum corneum (SC) is damaged. Therefore, we have developed a standardized in vitro barrier-disrupted skin model using tape stripping. METHODS: Different tape stripping conditions were evaluated using histology, transepidermal water loss, infrared densitometry, and caffeine absorption. RESULTS: The effects of tape stripping were comparable using pig and human skin. Optimized conditions were used to test the effect of SC damage and UV irradiation on the absorption of an UV filter combination present in a sunscreen. The bioavailability of the filters was extremely low regardless of the extent of skin damage, suggesting bioavailability would not be increased if the consumer applied the sunscreen to sun-damaged skin. CONCLUSION: This standardized in vitro methodology using pig or human skin for damaged skin will add valuable information for the safety assessment of topically applied products.


Asunto(s)
Modelos Biológicos , Absorción Cutánea , Piel/patología , Protectores Solares/farmacocinética , Administración Cutánea , Adulto , Animales , Disponibilidad Biológica , Cafeína/farmacocinética , Química Farmacéutica , Densitometría , Femenino , Humanos , Técnicas In Vitro , Persona de Mediana Edad , Especificidad de la Especie , Protectores Solares/administración & dosificación , Porcinos , Rayos Ultravioleta/efectos adversos , Pérdida Insensible de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...