Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 189: 114765, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36898272

RESUMEN

This paper looks at experiential feedback and the technical and scientific challenges tied to the MERITE-HIPPOCAMPE cruise that took place in the Mediterranean Sea in spring 2019. This cruise proposes an innovative approach to investigate the accumulation and transfer of inorganic and organic contaminants within the planktonic food webs. We present detailed information on how the cruise worked, including 1) the cruise track and sampling stations, 2) the overall strategy, based mainly on the collection of plankton, suspended particles and water at the deep chlorophyll maximum, and the separation of these particles and planktonic organisms into various size fractions, as well as the collection of atmospheric deposition, 3) the operations performed and material used at each station, and 4) the sequence of operations and main parameters analysed. The paper also provides the main environmental conditions that were prevailing during the campaign. Lastly, we present the types of articles produced based on work completed by the cruise that are part of this special issue.


Asunto(s)
Cadena Alimentaria , Plancton , Mar Mediterráneo , Estaciones del Año , Oceanografía
2.
Ecol Evol ; 12(12): e9566, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36479032

RESUMEN

Cryptic species diversity is known to be common in bats but remains challenging to study in these mammals, whose natural history traits render their sampling and monitoring challenging. For these animals, indirect genetic approaches provide a powerful tool to gain insight into the evolutionary history and ecology of cryptic bat species. The speciation history of the polyphyletic Chaerephon pumilus species group (Molossidae) is poorly understood, including those found on western Indian Ocean islands. Two species in this complex have been identified in the Comoros: C. pusillus and C. leucogaster. Here, we aim to genetically characterize these two species and investigate their spatial population genetic structure. Analyzing five nuclear microsatellite markers from 200 individuals and one mitochondrial DNA gene (Cyt-b) from 161 (out of the 200) individuals sampled on Madagascar and the Comoros, our findings indicated that these species are genetically differentiated. We observed mitonuclear discordance in numerous individuals (33% of the 161 mtDNA-sequenced individuals). Based on ABC analyses, we found that this pattern could potentially be the result of asymmetric introgressive hybridization from C. leucogaster to C. pusillus and calls for further studies on the demographic history of these species. Moreover, at the intra-specific level, analyses of the microsatellite loci suggested the evidence of a more pronounced, although weak, geographically based genetic structure in C. pusillus than in C. leucogaster. Altogether, our findings provide preliminary insights into the eco-evolutionary aspects of this species complex and warrant further research to understand hybridization dynamics and mechanisms responsible for mitonuclear discordance.

3.
Sci Adv ; 8(47): eadd7540, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36417524

RESUMEN

Several bat species act as asymptomatic reservoirs for many viruses that are highly pathogenic in other mammals. Here, we have characterized the functional diversification of the protein kinase R (PKR), a major antiviral innate defense system. Our data indicate that PKR has evolved under positive selection and has undergone repeated genomic duplications in bats in contrast to all studied mammals that have a single copy of the gene. Functional testing of the relationship between PKR and poxvirus antagonists revealed how an evolutionary conflict with ancient pathogenic poxviruses has shaped a specific bat host-virus interface. We determined that duplicated PKRs of the Myotis species have undergone genetic diversification, allowing them to collectively escape from and enhance the control of DNA and RNA viruses. These findings suggest that viral-driven adaptations in PKR contribute to modern virus-bat interactions and may account for bat-specific immunity.

4.
Proc Natl Acad Sci U S A ; 119(35): e2206610119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35947637

RESUMEN

The coronavirus disease 19 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus that spilled over from the bat reservoir. Despite numerous clinical trials and vaccines, the burden remains immense, and the host determinants of SARS-CoV-2 susceptibility and COVID-19 severity remain largely unknown. Signatures of positive selection detected by comparative functional genetic analyses in primate and bat genomes can uncover important and specific adaptations that occurred at virus-host interfaces. We performed high-throughput evolutionary analyses of 334 SARS-CoV-2-interacting proteins to identify SARS-CoV adaptive loci and uncover functional differences between modern humans, primates, and bats. Using DGINN (Detection of Genetic INNovation), we identified 38 bat and 81 primate proteins with marks of positive selection. Seventeen genes, including the ACE2 receptor, present adaptive marks in both mammalian orders, suggesting common virus-host interfaces and past epidemics of coronaviruses shaping their genomes. Yet, 84 genes presented distinct adaptations in bats and primates. Notably, residues involved in ubiquitination and phosphorylation of the inflammatory RIPK1 have rapidly evolved in bats but not primates, suggesting different inflammation regulation versus humans. Furthermore, we discovered residues with typical virus-host arms race marks in primates, such as in the entry factor TMPRSS2 or the autophagy adaptor FYCO1, pointing to host-specific in vivo interfaces that may be drug targets. Finally, we found that FYCO1 sites under adaptation in primates are those associated with severe COVID-19, supporting their importance in pathogenesis and replication. Overall, we identified adaptations involved in SARS-CoV-2 infection in bats and primates, enlightening modern genetic determinants of virus susceptibility and severity.


Asunto(s)
COVID-19 , Quirópteros , Evolución Molecular , Adaptación al Huésped , Primates , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , COVID-19/genética , Quirópteros/virología , Predisposición Genética a la Enfermedad , Adaptación al Huésped/genética , Humanos , Pandemias , Primates/genética , Primates/virología , SARS-CoV-2/genética , Selección Genética , Glicoproteína de la Espiga del Coronavirus/genética
5.
Sci Total Environ ; 838(Pt 1): 155911, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35577087

RESUMEN

Urbanization of coastal habitats, of which harbors and marinas are the paragon, has led to various ecological paradigms about their functioning. Harbor infrastructures offer new hard substrata that are colonized by a wide variety of organisms (biofouling) including many introduced species. These structures also modify hydrodynamism and contaminant dispersal, leading to strong disturbance gradients within them. Differences in sessile community structure have previously been correlated to these gradients at small spatial scale (<100 m). Local adaptation might be involved to explain such results, but as correlation is not causation, the present study aims to understand the causal link between the environmental gradients and community structure through a reciprocal transplant experiment among three sites of a marina (inner, middle, entrance). Our results highlighted strong small-scale spatial variations of contaminants (trace metals, PCB, pesticides, and PAH) in sediments and animal samples which have been causally linked to changes in community composition after transplant. But historical contingency and colonization succession also play an important role. Our results provided strong evidence for local adaptation since community structure, respiration, and pollutant uptake in Bugula neritina, as well as the metabolomes of B. neritina and Ciona intestinalis were impacted by the transplant with a disadvantage for individuals transplanted from the entrance to the inner location. The here observed results may thus indicate that the disturbance gradient in marinas might constitute a staple for selecting pollutant-resistant species and populations, causing local adaptation. This highlights the importance of conducting further studies into small scale local adaptation.


Asunto(s)
Ecosistema , Contaminantes Ambientales , Adaptación Fisiológica , Animales , Especies Introducidas , Urbanización
6.
Viruses ; 13(7)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201626

RESUMEN

Hepatitis delta virus (HDV) is a defective human virus that lacks the ability to produce its own envelope proteins and is thus dependent on the presence of a helper virus, which provides its surface proteins to produce infectious particles. Hepatitis B virus (HBV) was so far thought to be the only helper virus described to be associated with HDV. However, recent studies showed that divergent HDV-like viruses could be detected in fishes, birds, amphibians, and invertebrates, without evidence of any HBV-like agent supporting infection. Another recent study demonstrated that HDV can be transmitted and propagated in experimental infections ex vivo and in vivo by different enveloped viruses unrelated to HBV, including hepatitis C virus (HCV) and flaviviruses such as Dengue and West Nile virus. All this new evidence, in addition to the identification of novel virus species within a large range of hosts in absence of HBV, suggests that deltaviruses may take advantage of a large spectrum of helper viruses and raises questions about HDV origins and evolution.


Asunto(s)
Virus Helper , Hepatitis D/virología , Virus de la Hepatitis Delta , Animales , Evolución Molecular , Genoma Viral , Virus Helper/fisiología , Virus de la Hepatitis Delta/clasificación , Virus de la Hepatitis Delta/genética , Virus de la Hepatitis Delta/fisiología , Especificidad del Huésped , Humanos , Filogenia , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
7.
Chemosphere ; 263: 127695, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32818848

RESUMEN

The submarine discharge of the high pH clarified Bayer effluent of the Gardanne alumina plant (Marseille region, France) leads to the formation of concretions at the outfall 324 m underwater and to a plume of white particles. The bulk chemical composition of the concretions has been determined by SF-ICP-MS. Mg and Al are the major elements measured with concentrations of a few hundred mg g-1. Ca and S are also found at concentrations in the range of mg g-1. Among the measured trace elements there is a specific interest in As and V because of environmental concerns pointed out by regulation authorities. Their concentrations are of tens to thousands µg g-1, respectively. Concentrations of the other elements are in the range of a few ng g-1 to few hundreds µg g-1. In order to constrain the dispersion of particles in the environment and to understand how chemical elements can be scavenged from or released to seawater, the size distribution of particles composing the concretions has been measured by settling rate experiments and, for each size class of particles, their chemical composition has been determined. For example, As and V are mainly associated to particles with mean diameters between 15.6 and 63 µm and settling rates around 96 m d-1. Overall, all the main elements (Mg, Al, Ca, S) composing concretions are associated to this size class of particles which represents 53-60% of the total concretion mass.


Asunto(s)
Óxido de Aluminio , Oligoelementos , Monitoreo del Ambiente , Francia , Agua de Mar , Oligoelementos/análisis
8.
Front Immunol ; 11: 605270, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391270

RESUMEN

Studying the evolutionary diversification of mammalian antiviral defenses is of main importance to better understand our innate immune repertoire. The small HERC proteins are part of a multigene family, including HERC5 and HERC6, which have probably diversified through complex evolutionary history in mammals. Here, we performed mammalian-wide phylogenetic and genomic analyses of HERC5 and HERC6, using 83 orthologous sequences from bats, rodents, primates, artiodactyls, and carnivores-the top five representative groups of mammalian evolution. We found that HERC5 has been under weak and differential positive selection in mammals, with only primate HERC5 showing evidences of pathogen-driven selection. In contrast, HERC6 has been under strong and recurrent adaptive evolution in mammals, suggesting past and widespread genetic arms-races with viral pathogens. Importantly, the rapid evolution of mammalian HERC6 spacer domain suggests that it might be a host-pathogen interface, targeting viral proteins and/or being the target of virus antagonists. Finally, we identified a HERC5/6 chimeric gene that arose from independent duplication in rodent and bat lineages and encodes for a conserved HERC5 N-terminal domain and divergent HERC6 spacer and HECT domains. This duplicated chimeric gene highlights adaptations that potentially contribute to rodent and bat immunity. Our findings open new research avenues on the functions of HERC6 and HERC5/6 in mammals, and on their implication in antiviral innate immunity.


Asunto(s)
Quirópteros/genética , Evolución Molecular , Duplicación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Selección Genética , Ubiquitina-Proteína Ligasas/genética , Animales , Quirópteros/inmunología , Dosificación de Gen , Genómica , Ratones , Filogenia , Especificidad de la Especie
9.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541833

RESUMEN

Human hepatitis B virus (HBV) is a global health problem, affecting more than 250 million people worldwide. HBV-like viruses, named orthohepadnaviruses, also naturally infect nonhuman primates, rodents, and bats, but their pathogenicity and evolutionary history are unclear. Here, we determined the evolutionary history of the HBV receptors NTCP and GPC5 over millions of years of primate, rodent, and bat evolution. We use this as a proxy to understand the pathogenicity of orthohepadnaviruses in mammalian hosts and to determine the implications for species specificity. We found that NTCP, but not GPC5, has evolved under positive selection in primates (27 species), rodents (18 species), and bats (21 species) although at distinct residues. Notably, the positively selected codons map to the HBV-binding sites in primate NTCP, suggesting past genetic "arms races" with pathogenic orthohepadnaviruses. In rodents, the positively selected codons fall outside and within the presumed HBV-binding sites, which may contribute to the restricted circulation of rodent orthohepadnaviruses. In contrast, the presumed HBV-binding motifs in bat NTCP are conserved, and none of the positively selected codons map to this region. This suggests that orthohepadnaviruses may bind to different surfaces in bat NTCP. Alternatively, the patterns may reflect adaptive changes associated with metabolism rather than pathogens. Overall, our findings further point to NTCP as a naturally occurring genetic barrier for cross-species transmissions in primates, which may contribute to the narrow host range of HBV. In contrast, this constraint seems less important in bats, which may correspond to greater orthohepadnavirus circulation and diversity.IMPORTANCE Chronic infection with hepatitis B virus (HBV) is a major cause of liver disease and cancer in humans. Mammalian HBV-like viruses are also found in nonhuman primates, rodents, and bats. As for most viruses, HBV requires a successful interaction with a host receptor for replication. Cellular receptors are thus key determinants of host susceptibility as well as specificity. One hallmark of pathogenic virus-host relationships is the reciprocal evolution of host receptor and viral envelope proteins, as a result of their antagonistic interaction over time. The dynamics of these so-called "evolutionary arms races" can leave signatures of adaptive selection, which in turn reveal the evolutionary history of the virus-host interaction as well as viral pathogenicity and the genetic determinants of species specificity. Here, we show how HBV-like viruses have shaped the evolutionary history of their mammalian host receptor, as a result of their ancient pathogenicity, and decipher the genetic determinants of cross-species transmissions.


Asunto(s)
Virus de la Hepatitis B/patogenicidad , Hepatitis B/veterinaria , Especificidad del Huésped/genética , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Proteínas del Envoltorio Viral/genética , Animales , Quirópteros/virología , Evolución Molecular , Variación Genética , Hepatitis B/patología , Hepatitis B/virología , Humanos , Primates/virología , Roedores/virología , Especificidad de la Especie , Internalización del Virus
11.
Sci Rep ; 6: 27247, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27263862

RESUMEN

The role of the northward expansion of Culicoides imicola Kieffer in recent and unprecedented outbreaks of Culicoides-borne arboviruses in southern Europe has been a significant point of contention. We combined entomological surveys, movement simulations of air-borne particles, and population genetics to reconstruct the chain of events that led to a newly colonized French area nestled at the northern foot of the Pyrenees. Simulating the movement of air-borne particles evidenced frequent wind-transport events allowing, within at most 36 hours, the immigration of midges from north-eastern Spain and Balearic Islands, and, as rare events, their immigration from Corsica. Completing the puzzle, population genetic analyses discriminated Corsica as the origin of the new population and identified two successive colonization events within west-Mediterranean basin. Our findings are of considerable importance when trying to understand the invasion of new territories by expanding species.


Asunto(s)
Lengua Azul/transmisión , Ceratopogonidae/clasificación , Ceratopogonidae/fisiología , Insectos Vectores/clasificación , Insectos Vectores/fisiología , Animales , Lengua Azul/epidemiología , Ceratopogonidae/genética , Ceratopogonidae/virología , ADN/genética , Brotes de Enfermedades , Entomología , Europa (Continente) , Francia , Variación Genética , Genética de Población , Insectos Vectores/genética , Insectos Vectores/virología , Desequilibrio de Ligamiento , Filogeografía , Análisis de Secuencia de ADN , Ovinos , España , Viento
12.
Parasit Vectors ; 9: 141, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26968517

RESUMEN

BACKGROUND: Introduction of vector species into new areas represents a main driver for the emergence and worldwide spread of vector-borne diseases. This poses a substantial threat to livestock economies and public health. Culicoides imicola Kieffer, a major vector species of economically important animal viruses, is described with an apparent range expansion in Europe where it has been recorded in south-eastern continental France, its known northern distribution edge. This questioned on further C. imicola population extension and establishment into new territories. Studying the spatio-temporal genetic variation of expanding populations can provide valuable information for the design of reliable models of future spread. METHODS: Entomological surveys and population genetic approaches were used to assess the spatio-temporal population dynamics of C. imicola in France. Entomological surveys (2-3 consecutive years) were used to evaluate population abundances and local spread in continental France (28 sites in the Var department) and in Corsica (4 sites). We also genotyped at nine microsatellite loci insects from 3 locations in the Var department over 3 years (2008, 2010 and 2012) and from 6 locations in Corsica over 4 years (2002, 2008, 2010 and 2012). RESULTS: Entomological surveys confirmed the establishment of C. imicola populations in Var department, but indicated low abundances and no apparent expansion there within the studied period. Higher population abundances were recorded in Corsica. Our genetic data suggested the absence of spatio-temporal genetic changes within each region but a significant increase of the genetic differentiation between Corsican and Var populations through time. The lack of intra-region population structure may result from strong gene flow among populations. We discussed the observed temporal variation between Corsica and Var as being the result of genetic drift following introduction, and/or the genetic characteristics of populations at their range edge. CONCLUSIONS: Our results suggest that local range expansion of C. imicola in continental France may be slowed by the low population abundances and unsuitable climatic and environmental conditions.


Asunto(s)
Ceratopogonidae/clasificación , Ceratopogonidae/genética , Variación Genética , Animales , Entomología , Francia , Genética de Población , Genotipo , Técnicas de Genotipaje , Repeticiones de Microsatélite , Dinámica Poblacional , Análisis Espacio-Temporal
13.
Vet Res ; 44: 79, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-24016261

RESUMEN

Recent studies have produced new insight into the origin and distribution of some cattle ticks in the south-western Indian Ocean islands. Rhipicephalus appendiculatus, introduced from Tanzania in 2002, is now well established on Grande Comore but has not yet reached the other islands of the archipelago (Mohéli, Anjouan and Mayotte). Only one of the two clades identified in Africa has settled so far. Amblyomma variegatum, which was not supposed to be able to persist in the Antananarivo region (1300 m) nor in other Malagasy regions of high altitude without regular introductions of ticks by infested cattle, is now endemic as a general rule up to 1600 m although other regions of lower altitude (1400 m) are still free of the tick. This species remains confined in a small area of the west coast on La Reunion Island. On the contrary, Hyalomma dromedarii could not settle on Madagascar where it was introduced in 2008 and Rhipicephalus evertsi evertsi is not yet present in Grande Comore despite regular introductions by infested cattle from Tanzania. A phylogeographic approach has been carried out at an intra-specific level for A. variegatum. This study has led to the identification of two main lineages, one covering all species distribution and one restricted to East Africa and the Indian Ocean area. These two lineages are in sympatry in Madagascar where a high genetic diversity has been described, whereas a lower genetic diversity is observed on other islands. These results seem to agree with the historical data concerning the introduction of the tick in the Indian Ocean area.


Asunto(s)
Distribución Animal , Enfermedades de los Bovinos/parasitología , Especies Introducidas , Ixodidae/fisiología , Infestaciones por Garrapatas/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Variación Genética , Islas del Oceano Índico/epidemiología , Ixodidae/genética , Filogeografía , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/parasitología
14.
Nature ; 446(7139): 1070-4, 2007 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-17460670

RESUMEN

The availability of iron limits primary productivity and the associated uptake of carbon over large areas of the ocean. Iron thus plays an important role in the carbon cycle, and changes in its supply to the surface ocean may have had a significant effect on atmospheric carbon dioxide concentrations over glacial-interglacial cycles. To date, the role of iron in carbon cycling has largely been assessed using short-term iron-addition experiments. It is difficult, however, to reliably assess the magnitude of carbon export to the ocean interior using such methods, and the short observational periods preclude extrapolation of the results to longer timescales. Here we report observations of a phytoplankton bloom induced by natural iron fertilization--an approach that offers the opportunity to overcome some of the limitations of short-term experiments. We found that a large phytoplankton bloom over the Kerguelen plateau in the Southern Ocean was sustained by the supply of iron and major nutrients to surface waters from iron-rich deep water below. The efficiency of fertilization, defined as the ratio of the carbon export to the amount of iron supplied, was at least ten times higher than previous estimates from short-term blooms induced by iron-addition experiments. This result sheds new light on the effect of long-term fertilization by iron and macronutrients on carbon sequestration, suggesting that changes in iron supply from below--as invoked in some palaeoclimatic and future climate change scenarios--may have a more significant effect on atmospheric carbon dioxide concentrations than previously thought.


Asunto(s)
Carbono/metabolismo , Hierro/metabolismo , Fitoplancton/metabolismo , Agua de Mar/química , Atmósfera/química , Dióxido de Carbono/metabolismo , Clorofila/análisis , Clorofila A , Difusión , Geografía , Océanos y Mares , Presión Parcial , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...