Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Front Plant Sci ; 14: 1194622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496861

RESUMEN

The deciphering of the epidemiology of a plant virus has long been focused on the study of interactions between partners of one pathosystem. However, plants are exposed to numerous viruses which lead to frequent co-infection scenarios. This can change characteristics of virus-vector-host interactions and could impact the epidemiology of viral diseases. Barley yellow dwarf virus-PAV (BYDV-PAV; species: Luteovirus pavhordei; genus Luteovirus), wheat dwarf virus (WDV; genus Mastrevirus) and their respective vectors (BYDV-PAV: e.g. Rhopalosiphum padi and WDV: Psammotettix alienus) are commonly found in cereal fields. Wheat plants co-infected with BYDV-PAV and WDV have been reported from field surveys, although epidemiological outcomes of BYDV-PAV - WDV interactions in planta have not yet been studied. Experiments were carried out to evaluate and compare, through different competition scenarios (i.e. single- and co- (simultaneous and sequential) inoculations), the efficiency of BYDV-PAV and WDV to infect, to accumulate in and to be spread between wheat plants. Moreover, the impact of competition scenarios on the biological parameters of these two viruses was evaluated at different stages of the infection and with plants at different ages at inoculation. Results showed i) that these viruses achieve their infection cycle and their plant-to-plant transmission with different efficiencies and ii) BYDV-PAV - WDV interactions lead to different phenotypes ranging from antagonism to synergism. Finally, when these two viruses share a host, the nature and strength of virus-virus interactions varied depending on the order of virus arrival, stages of the infection cycle and plant age at inoculation. Precisely, the introduction (i.e. co- and sequential inoculation) and infection process (i.e. virus accumulation) of BYDV-PAV in a wheat benefit from the presence of WDV. For the latter, the sympatry with BYDV-PAV exerts opposite pressure on parameters involved in virus introduction (i.e. benefit during sequential inoculation) and spread (i.e. lower transmission efficiency and virus accumulation in co-infected plants). In the context of increased potential exposure of crops to insect vectors, this study participates in a better understanding of the impact of BYDV-PAV and WDV co-infections on biological and ecological parameters of the diseases induced by these viruses.

2.
Insects ; 13(6)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35735858

RESUMEN

Intercropping, i.e., association of two or more species, is promising to reduce insect populations in fields. The cereal aphid Rhopalosiphum padi, a vector of the Barley yellow dwarf virus PAV (BYDV-PAV), represents a major threat for cereal grain production. In this study, we tested the potential of winter barley intercropped with clover to reduce the size of R. padi populations and to lower the BYDV-PAV incidence in fields. We used arenas (i.e., sets of 36 barley plants) intercropped with or without clover plants (at different sown densities). In each arena, a single viruliferous founder, R. padi, (with an alate or a wingless morph) was deposited to introduce aphids and viruses in the experiment. Thirteen days later, the number of aphids in the arena, the percentage of plants hosting aphids and the infection rates were monitored. Data produced through this experimental design showed that clover alters the distribution of the aphid progeny (lower aphid spread) produced by an alate founder morph. Moreover, clover reduces the size of aphid populations produced by a wingless founder morph. However, despite the effects of clover on biological parameters of R. padi, the presence of clover in barley arena did not modify BYDV infections, suggesting complex mechanisms between partners of the BYDV pathosystem for plant-to-plant virus spread.

3.
Plants (Basel) ; 10(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34961217

RESUMEN

Neonicotinoids are widely used to protect fields against aphid-borne viral diseases. The recent ban of these chemical compounds in the European Union has strongly impacted rapeseed and sugar beet growing practices. The poor sustainability of other insecticide families and the low efficiency of prophylactic methods to control aphid populations and pathogen introduction strengthen the need to characterize the efficiency of new plant protection products targeting aphids. In this study, the impact of Movento® (Bayer S.A.S., Leverkusen, Germany), a tetrameric acid derivative of spirotetramat, on Myzus persicae and on viral transmission was analyzed under different growing temperatures. The results show (i) the high efficiency of Movento® to protect rapeseed and sugar beet plants against the establishment of aphid colonies, (ii) the impact of temperature on the persistence of the Movento® aphicid properties and (iii) a decrease of approximately 10% of the viral transmission on treated plants. These observations suggest a beneficial effect of Movento® on the sanitary quality of treated crops by directly reducing primary infections and indirectly altering, through aphid mortality, secondary infections on which the spread of disease within field depends. These data constitute important elements for the future development of management strategies to protect crops against aphid-transmitted viruses.

4.
PLoS Comput Biol ; 17(8): e1009315, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34375330

RESUMEN

[This corrects the article DOI: 10.1371/journal.pcbi.1006085.].

5.
Plants (Basel) ; 10(2)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562120

RESUMEN

Turnip yellows virus (TuYV), transmitted by Myzus persicae, can be controlled in rapeseed fields by insecticide treatments. However, the recent ban of the neonicotinoids together with the description of pyrethrinoid-resistant aphids has weakened insecticide-based control methods available to farmers. Since the deployment of insecticides in the 1980s, few research efforts were made to breed for rapeseed cultivars resistant to aphid-borne viral diseases. Thus, only few rapeseed cultivars released in Europe were reported to be TuYV-resistant, and the resistance phenotype of these cultivars was poorly characterized. In this study, several epidemiological parameters (infection rate, latency period, etc.) associated to the TuYV-resistance of the cv. Architect were estimated. Results showed a partial resistance phenotype for plants inoculated at the 2-/4-leaves stages and a resistance phenotype for plants inoculated at a more advanced growing stage. Moreover, analysis of infected plants highlighted (i) a poor quality of infected cv. Architect as a source of virus for transmission and (ii) an extended latency period for infected plants. Thus, dynamics of virus spread in the field should to be slower for Architect compared to susceptible rapeseed cultivars, which should lead to the maintenance of a higher proportion of healthy plants in the field.

6.
Pest Manag Sci ; 76(7): 2276-2285, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32243081

RESUMEN

Barley/cereal yellow dwarf viruses (YDVs) cause yellow dwarf disease (YDD), which is a continuous risk to cereals production worldwide. These viruses cause leaf yellowing and stunting, resulting in yield reductions of up to 80%. YDVs have been a consistent but low-level problem in European cereal cultivation for the last three decades, mostly due to the availability of several effective insecticides (largely pyrethroids and more recently neonicotinoids) against aphid vectors. However, this has changed recently, with many insecticides being lost, culminating in a recent European Union (EU) regulation prohibiting outdoor use of the neonicotinoid-insecticide compounds. This change is coupled with the growing challenge of insecticide-resistant aphids, the lack of genetic resources against YDVs, and a knowledge deficit around the parameters responsible for the emergence and spread of YDD. This means that economic sustainability of cereal cultivation in several European countries including France and United Kingdom is now again threatened by this aphid-vectored viral disease. In this review, we summarize the current knowledge on the YDV pathosystem, describe management options against YDD, analyse the impacts of the neonicotinoid ban in Europe, and consider future strategies to control YDV. © 2020 Society of Chemical Industry.


Asunto(s)
Agricultura , Animales , Áfidos , Europa (Continente) , Neonicotinoides
7.
Phytopathology ; 109(7): 1198-1207, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31166155

RESUMEN

Epidemiological models are increasingly used to predict epidemics and improve management strategies. However, they rarely consider landscape characteristics although such characteristics can influence the epidemic dynamics and, thus, the effectiveness of disease management strategies. Here, we present a generic in silico approach which assesses the influence of landscape aggregation on the costs associated with an epidemic and on improved management strategies. We apply this approach to sharka, one of the most damaging diseases of Prunus trees, for which a management strategy is already applied in France. Epidemic simulations were carried out with a spatiotemporal stochastic model under various management strategies in landscapes differing in patch aggregation. Using sensitivity analyses, we highlight the impact of management parameters on the economic output of the model. We also show that the sensitivity analysis can be exploited to identify several strategies that are, according to the model, more profitable than the current French strategy. Some of these strategies are specific to a given aggregation level, which shows that management strategies should generally be tailored to each specific landscape. However, we also identified a strategy that is efficient for all levels of landscape aggregation. This one-size-fits-all strategy has important practical implications because of its simple applicability at a large scale.


Asunto(s)
Enfermedades de las Plantas , Prunus , Productos Agrícolas , Francia , Enfermedades de las Plantas/prevención & control , Prunus/virología , Árboles
8.
Mol Plant Pathol ; 20(8): 1051-1066, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31115167

RESUMEN

Many recessive resistances against potyviruses are mediated by eukaryotic translation initiation factor 4E (eIF4E). In tobacco, the va resistance gene commonly used to control Potato virus Y (PVY) corresponds to a large deletion affecting the eIF4E-1 gene on chromosome 21. Here, we compared the resistance durability conferred by various types of mutations affecting eIF4E-1 (deletions of various sizes, frameshift or nonsense mutations). The 'large deletion' genotypes displayed the broadest and most durable resistance, whereas frameshift and nonsense mutants displayed a less durable resistance, with rapid and frequent apparition of resistance-breaking variants. In addition, genetic and transcriptomic analyses revealed that resistance durability is strongly impacted by a complex genetic locus on chromosome 14, which contains three other eIF4E genes. One of these, eIF4E-3, is rearranged as a hybrid gene between eIF4E-2 and eIF4E-3 (eIF4E-2-3 ) in the genotypes showing the most durable resistance, while eIF4E-2 is differentially expressed between the tested varieties. RNA-seq and quantitative reverse transcriptase-polymerase chain reaction experiments demonstrated that eIF4E-2 expression level is positively correlated with resistance durability. These results suggest that besides the nature of the mutation affecting eIF4E-1, three factors linked with a complex locus may potentially impact va durability: loss of an integral eIF4E-3, presence of eIF4E-2-3 and overexpression of eIF4E-2. This latter gene might act as a decoy in a non-productive virus-plant interaction, limiting the ability of PVY to evolve towards resistance breaking. Taken together, these results show that va resistance durability can in large part be explained by complex redundancy effects in the eIF4E gene family.


Asunto(s)
Resistencia a la Enfermedad , Factor 4E Eucariótico de Iniciación/genética , Genes de Plantas , Sitios Genéticos , Nicotiana/inmunología , Nicotiana/virología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Sustitución de Aminoácidos/genética , Cromosomas de las Plantas/genética , Ecotipo , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Genotipo , Modelos Biológicos , Mutación/genética , Fenotipo , Filogenia , Enfermedades de las Plantas/genética , Eliminación de Secuencia , Nicotiana/genética
9.
Phytopathology ; 109(7): 1184-1197, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30844325

RESUMEN

Improvement of management strategies of epidemics is often hampered by constraints on experiments at large spatiotemporal scales. A promising approach consists of modeling the biological epidemic process and human interventions, which both impact disease spread. However, few methods enable the simultaneous optimization of the numerous parameters of sophisticated control strategies. To do so, we propose a heuristic approach (i.e., a practical improvement method approximating an optimal solution) based on sequential sensitivity analyses. In addition, we use an economic improvement criterion based on the net present value, accounting for both the cost of the different control measures and the benefit generated by disease suppression. This work is motivated by sharka (caused by Plum pox virus), a vector-borne disease of prunus trees (especially apricot, peach, and plum), the management of which in orchards is mainly based on surveillance and tree removal. We identified the key parameters of a spatiotemporal model simulating sharka spread and control and approximated optimal values for these parameters. The results indicate that the current French management of sharka efficiently controls the disease, but it can be economically improved using alternative strategies that are identified and discussed. The general approach should help policy makers to design sustainable and cost-effective strategies for disease management.


Asunto(s)
Enfermedades de las Plantas/prevención & control , Virus Eruptivo de la Ciruela , Prunus domestica , Prunus , Prunus/virología , Árboles
10.
Viruses ; 12(1)2019 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-31905671

RESUMEN

Wheat dwarf virus, transmitted by the leafhopper Psammotettix alienus in a persistent, non-propagative manner, infects numerous species from the Poaceae family. Data associated with wheat dwarf virus (WDV) suggest that some isolates preferentially infect wheat while other preferentially infect barley. This allowed to define the wheat strain and the barley strain. There are contradictory results in the literature regarding the ability of each of these two strains to infect its non-preferred host. To improve knowledge on the interactions between WDV strains and barley and wheat, transmission experiments were carried out using barcoded P. alienus and an experimental design based on single/sequential acquisitions of WDV strains and on transmissions to wheat and barley. Results showed that (I) WDV strains are transmitted with similar efficiencies by P. alienus males, females and larvae, (II) WDV wheat and barley strains do not infect barley and wheat plants, respectively, and (III) a functional transcomplementation between the wheat and barley strains allows a mixed infection of barley and wheat. The described ability of each WDV strain to infect a non-host plant in the presence of the other viral strain must be considered to analyze data available on WDV host range.


Asunto(s)
Geminiviridae/clasificación , Prueba de Complementación Genética , Hemípteros/virología , Hordeum/virología , Especificidad del Huésped , Triticum/virología , Animales , Femenino , Geminiviridae/patogenicidad , Insectos Vectores/virología , Larva/virología , Masculino , Filogenia , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología
11.
PLoS Comput Biol ; 14(4): e1006085, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29708968

RESUMEN

Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control. Further complications arise from imperfect detection of disease and from the huge number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch geometry, we demonstrate that disease dispersal distances can be estimated accurately in a patchy (i.e. fragmented) landscape when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years in 605 orchards, we obtain the first estimate of the distribution of flight distances of infectious aphids at the landscape scale. About 50% of aphid flights terminate beyond 90 m, which implies that most infectious aphids leaving a tree land outside the bounds of a 1-ha orchard. Moreover, long-distance flights are not rare-10% of flights exceed 1 km. By their impact on our quantitative understanding of winged aphid dispersal, these results can inform the design of management strategies for plant viruses, which are mainly aphid-borne.


Asunto(s)
Áfidos/virología , Insectos Vectores/virología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Virus Eruptivo de la Ciruela/patogenicidad , Agricultura , Algoritmos , Animales , Teorema de Bayes , Biología Computacional , Simulación por Computador , Modelos Biológicos , Enfermedades de las Plantas/estadística & datos numéricos , Prunus/virología
12.
R Soc Open Sci ; 5(1): 171435, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29410846

RESUMEN

Identifying the key factors underlying the spread of a disease is an essential but challenging prerequisite to design management strategies. To tackle this issue, we propose an approach based on sensitivity analyses of a spatiotemporal stochastic model simulating the spread of a plant epidemic. This work is motivated by the spread of sharka, caused by plum pox virus, in a real landscape. We first carried out a broad-range sensitivity analysis, ignoring any prior information on six epidemiological parameters, to assess their intrinsic influence on model behaviour. A second analysis benefited from the available knowledge on sharka epidemiology and was thus restricted to more realistic values. The broad-range analysis revealed that the mean duration of the latent period is the most influential parameter of the model, whereas the sharka-specific analysis uncovered the strong impact of the connectivity of the first infected orchard. In addition to demonstrating the interest of sensitivity analyses for a stochastic model, this study highlights the impact of variation ranges of target parameters on the outcome of a sensitivity analysis. With regard to sharka management, our results suggest that sharka surveillance may benefit from paying closer attention to highly connected patches whose infection could trigger serious epidemics.

13.
Insect Sci ; 25(1): 148-160, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27450152

RESUMEN

The Wheat dwarf virus, the causal agent of the wheat dwarf disease, is transmitted by leafhoppers from the genus Psammotettix and currently the main protection strategy is based on the use of insecticide treatments. Sustainable management strategies for insect vectors should include methods that are targeted to disrupt reproductive behavior and here we investigated the mating behavior of Psammotettix alineus (Dahlbom 1850) in order to determine the role of vibrational signals in intra-specific communication and pair formation. Both genders spontaneously emit species- and sex-specific calling songs that consisted of regularly repeated pulse trains and differ primarily in pulse train duration and pulse repetition time. Females preferred the conspecific male calling song. After a coordinated exchange of pulse trains, the male approached the stationary female. During the close range courtship and also immediately prior to copulatory attempts distinct male vibrational signals associated with wing flapping and wing vibrations were recorded from the substrate. In the presence of a receptive female, competing males emitted vibrational signals most likely aimed to interfere with male-female interaction. Mated females regained sexual receptivity after they laid eggs. Although results suggest that the viruliferous status of insects may have an effect on vibrational songs, our current results did not reveal a significant effect of virus on leafhopper performance in mating behavior. However, this study also suggests, that detailed understanding of plant-vector-virus interactions relevant for vector mating behavior is essential for trying new approaches in developing future control practices against plant viruses transmitted by insect vectors.


Asunto(s)
Hemípteros , Conducta Sexual Animal , Vocalización Animal , Animales , Femenino , Geminiviridae , Insectos Vectores , Masculino
14.
Annu Rev Phytopathol ; 55: 139-160, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28525307

RESUMEN

During the past decade, knowledge of pathogen life history has greatly benefited from the advent and development of molecular epidemiology. This branch of epidemiology uses information on pathogen variation at the molecular level to gain insights into a pathogen's niche and evolution and to characterize pathogen dispersal within and between host populations. Here, we review molecular epidemiology approaches that have been developed to trace plant virus dispersal in landscapes. In particular, we highlight how virus molecular epidemiology, nourished with powerful sequencing technologies, can provide novel insights at the crossroads between the blooming fields of landscape genetics, phylogeography, and evolutionary epidemiology. We present existing approaches and their limitations and contributions to the understanding of plant virus epidemiology.


Asunto(s)
Enfermedades de las Plantas/virología , Virus de Plantas/genética , Epidemiología Molecular , Filogeografía
15.
Phytopathology ; 105(11): 1408-16, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26512749

RESUMEN

The relative durations of the incubation period (the time between inoculation and symptom expression) and of the latent period (the time between inoculation and infectiousness of the host) are poorly documented for plant diseases. However, the extent of asynchrony between the ends of these two periods (i.e., their mismatch) can be a key determinant of the epidemic dynamics for many diseases and consequently it is of primary interest in the design of disease management strategies. In order to assess this mismatch, an experimental approach was developed and applied using sharka, a severe disease caused by Plum pox virus (PPV, genus Potyvirus, family Potyviridae) affecting trees belonging to the genus Prunus. Leaves of infected young peach trees were used individually as viral sources in aphid-mediated transmission tests carried out at different time points postinoculation in order to bracket symptom onset. By fitting a nonlinear logistic model to the obtained transmission rates, we demonstrated that the first symptoms appear on leaves 1 day before they rapidly become infectious. In addition, among symptomatic leaves, symptom intensity and transmission rate are positively correlated. These results strengthen the conclusion that, under our experimental conditions, incubation and latent periods of PPV infection are almost synchronous.


Asunto(s)
Interacciones Huésped-Patógeno , Virus Eruptivo de la Ciruela/fisiología , Prunus/virología , Animales , Áfidos , Insectos Vectores , Enfermedades de las Plantas
16.
Virus Res ; 208: 110-9, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26071382

RESUMEN

The ability to induce the potato tuber necrosis ringspot disease (PTNRD) is a property shared by PVY isolates belonging to different groups (e.g. PVY(N) and PVY(O)) and variants (e.g. PVY(NTN) and PVY(N)-W). The identification of viral molecular determinant(s) involved in the expression of PTNRD symptoms is essential for (i) an easier detection of tuber necrosis isolates and (ii) an improvement of our knowledge on the epidemiology of this potato disease. A reverse genetic approach associated with a biological typing of a collection of PVY chimeras and mutants indicated that residue E419 of the HC-Pro protein is linked to the ability of PVY to induce tuber necrosis on four PTNRD-susceptible potato cultivars. Indeed, the substitution of the N-type glutamic acid (E) in O-type aspartic acid (D) at position 419 in the HC-Pro cistron prevents the expression of tuber necrosis on infected tubers without reducing the virulence of the corresponding E/D419 mutant. This result opens opportunities for the future studies on potato/PVY interactions.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Enfermedades de las Plantas/virología , Tubérculos de la Planta/virología , Potyvirus/metabolismo , Solanum tuberosum/virología , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Potyvirus/química , Potyvirus/genética , Potyvirus/patogenicidad , Proteínas Virales/química , Proteínas Virales/genética , Virulencia
17.
Annu Rev Phytopathol ; 53: 357-78, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26047559

RESUMEN

Many plant epidemics that cause major economic losses cannot be controlled with pesticides. Among them, sharka epidemics severely affect prunus trees worldwide. Its causal agent, Plum pox virus (PPV; genus Potyvirus), has been classified as a quarantine pathogen in numerous countries. As a result, various management strategies have been implemented in different regions of the world, depending on the epidemiological context and on the objective (i.e., eradication, suppression, containment, or resilience). These strategies have exploited virus-free planting material, varietal improvement, surveillance and removal of trees in orchards, and statistical models. Variations on these management options lead to contrasted outcomes, from successful eradication to widespread presence of PPV in orchards. Here, we present management strategies in the light of sharka epidemiology to gain insights from this worldwide experience. Although focused on sharka, this review highlights more general levers and promising approaches to optimize disease control in perennial plants.


Asunto(s)
Productos Agrícolas/virología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Virus Eruptivo de la Ciruela/fisiología , Prunus/virología
18.
Methods Mol Biol ; 1302: 207-25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25981257

RESUMEN

Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay.


Asunto(s)
ADN Viral/análisis , Geminiviridae/clasificación , Geminiviridae/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Potyvirus/clasificación , Potyvirus/genética , Recombinasas/metabolismo , ADN Viral/genética , Análisis de Secuencia de ADN/métodos
19.
Methods Mol Biol ; 1302: 187-206, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25981256

RESUMEN

The multiplex SNaPshot and the capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) procedures are here used for rapid and high-throughput description of the molecular variability of viral populations. Both approaches are based on (1) standard amplification of genomic sequence(s), (2) labeled primers or labeled single-stranded DNA, and (3) migration of fluorescent-labeled molecules in capillary electrophoresis system. The SNaPshot technology was used to describe the diversity of 20 targeted single nucleotide polymorphisms (SNPs) selected from alignment of viral genomic sequences retrieved from public database. The CE-SSCP procedure was applied to identify the polymorphisms of two small (<500 bases in length) genomic regions of viral genomes. The different steps of SNaPshot and CE-SSCP setup procedures are presented using Potato virus Y (PVY, Potyvirus) and Plum pox virus (PPV, Potyvirus) RNA viruses as molecular targets, respectively.


Asunto(s)
ADN Viral/análisis , Electroforesis Capilar/métodos , Polimorfismo de Nucleótido Simple/genética , Polimorfismo Conformacional Retorcido-Simple/genética , Potyvirus/clasificación , Potyvirus/genética , Análisis de Secuencia de ADN/métodos , Análisis Costo-Beneficio , Cartilla de ADN/química , ADN de Cadena Simple/genética , ADN Viral/genética , Electroforesis Capilar/economía , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN/economía
20.
Methods Mol Biol ; 1302: 249-57, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25981259

RESUMEN

This chapter describes an efficient approach that combines quality and yield extraction of viral nucleic acids from plants containing high levels of secondary metabolites and a sequence-independent amplification procedure for both the inventory of known plant viruses and the discovery of unknown ones. This approach turns out to be a useful tool for assessing the virome (the genome of all the viruses that inhabit a particular organism) of plants of interest. We here show that this approach enables the identification of a novel Potyvirus member within a single plant already known to be infected by two other Potyvirus species.


Asunto(s)
ADN Viral/análisis , Dioscorea/virología , Metagenómica , Virus de Plantas/clasificación , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Virión/genética , ADN Viral/genética , Genoma Viral , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Virus de Plantas/aislamiento & purificación , ARN Viral/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...