Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835332

RESUMEN

Purposeful induction of fever for healing, including the treatment of epilepsy, was used over 2000 years ago by Hippocrates. More recently, fever has been demonstrated to rescue behavioral abnormalities in children with autism. However, the mechanism of fever benefit has remained elusive due in large part to the lack of appropriate human disease models recapitulating the fever effect. Pathological mutations in the IQSEC2 gene are frequently seen in children presenting with intellectual disability, autism and epilepsy. We recently described a murine A350V IQSEC2 disease model, which recapitulates important aspects of the human A350V IQSEC2 disease phenotype and the favorable response to a prolonged and sustained rise in body core temperature in a child with the mutation. Our goal has been to use this system to understand the mechanism of fever benefit and then develop drugs that can mimic this effect and reduce IQSEC2-associated morbidity. In this study, we first demonstrate a reduction in seizures in the mouse model following brief periods of heat therapy, similar to what was observed in a child with the mutation. We then show that brief heat therapy is associated with the correction of synaptic dysfunction in neuronal cultures of A350V mice, likely mediated by Arf6-GTP.


Asunto(s)
Epilepsia , Factores de Intercambio de Guanina Nucleótido , Hipertermia Inducida , Proteínas del Tejido Nervioso , Convulsiones , Animales , Niño , Humanos , Ratones , Epilepsia/terapia , Factores de Intercambio de Guanina Nucleótido/genética , Calor , Discapacidad Intelectual/genética , Mutación , Proteínas del Tejido Nervioso/genética , Receptores AMPA/genética , Convulsiones/terapia
2.
Epilepsy Res ; 182: 106907, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344748

RESUMEN

IQSEC2 is an X-linked gene localized to the post synaptic density encoding a GTP exchange factor that regulates NMDA mediated changes in synaptic function. Mutations in the IQSEC2 gene are associated with drug resistant epilepsy, intellectual disability and autism. Precision medicine based therapeutics to treat IQSEC2 associated epilepsy requires the development and characterization of mutation specific animal models. To date no EEG recordings have been presented for any mouse model of any IQSEC2 mutation showing seizures. In this study we characterize the seizures and EEG brain wave abnormalities present in mice with a A350V IQSEC2 missense mutation that is associated with drug resistant epilepsy in man. We show that seizures are associated with a greater than 40% mortality rate in male mice and occur exclusively from post-natal day 16-20. EEG recordings of mouse pups during this window demonstrate seizures and the presence of spikes with a marked increase in delta waves. EEG recordings in adult male mice have persistent excessive slow frequency activity and spikes, but seizures were not recorded. RNAseq analysis of the hippocampi of mice prior to the development of seizures demonstrated marked abnormalities in canonical pathways involved in synaptogenesis and dendritic maturation with the most prominently dysregulated gene being that for TRH suggesting a potential target for therapy given the previous demonstration of TRH to decrease seizures in several forms of drug resistant epilepsy.


Asunto(s)
Epilepsia Refractaria , Medicina de Precisión , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Masculino , Ratones , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/genética
3.
Int J Hyperthermia ; 38(1): 1495-1501, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34666607

RESUMEN

OBJECTIVES: Mutations in the human IQSEC2 gene are associated with drug-resistant epilepsy and severe behavioral dysfunction. We have focused on understanding one human IQSEC2 missense mutation (A350V) for which we have created a corresponding A350V IQSEC2 mouse model by CRISPR which demonstrates seizures when the mice are 15-20 days old and impaired social vocalizations in adulthood. We observed that a child with the A350V mutation stops having seizures when experiencing a fever of greater than 38 °C. In this study, we first sought to determine if we could recapitulate this phenomenon in A350V 15-20 day old mice using a previously established protocol to raise body temperature to 39 °C achieved by housing the mice at 37 °C. We then sought to determine if mice in whom seizure activity had been prevented as pups would develop social vocalization activity in adulthood. METHODS: 15-20 day old A350V male mice were housed either at 37 °C or 22 °C. Ultrasonic vocalizations of these mice were assessed at 8-10 weeks in response to a female stimulus. RESULTS: Housing of 15-20 day old A350V mice at 37 °C resulted in a reduction in lethal seizures to 2% (1/41) compared to 45% (48/108) in mice housed at 22 °C, p = 0.0001. Adult A350V mice who had been housed at 37 °C as pups displayed a significant improvement in the production of social vocalizations. CONCLUSION: Raising the body temperature by raising the ambient temperature might provide a means to reduce seizures associated with the A350V IQSEC2 mutation and thereby allow for an improved neurodevelopmental trajectory.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Convulsiones/prevención & control , Temperatura , Vocalización Animal , Animales , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Vivienda , Masculino , Ratones , Proteínas del Tejido Nervioso
4.
Mol Psychiatry ; 26(12): 7498-7508, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34535765

RESUMEN

Mutations in the IQSEC2 gene are associated with drug-resistant, multifocal infantile and childhood epilepsy; autism; and severe intellectual disability (ID). We used induced pluripotent stem cell (iPSC) technology to obtain hippocampal neurons to investigate the neuropathology of IQSEC2-mediated disease. The neurons were characterized at three-time points during differentiation to assess developmental progression. We showed that immature IQSEC2 mutant dentate gyrus (DG) granule neurons were extremely hyperexcitable, exhibiting increased sodium and potassium currents compared to those of CRISPR-Cas9-corrected isogenic controls, and displayed dysregulation of genes involved in differentiation and development. Immature IQSEC2 mutant cultured neurons exhibited a marked reduction in the number of inhibitory neurons, which contributed further to hyperexcitability. As the mutant neurons aged, they became hypoexcitable, exhibiting reduced sodium and potassium currents and a reduction in the rate of synaptic and network activity, and showed dysregulation of genes involved in synaptic transmission and neuronal differentiation. Mature IQSEC2 mutant neurons were less viable than wild-type mature neurons and had reduced expression of surface AMPA receptors. Our studies provide mechanistic insights into severe infantile epilepsy and neurodevelopmental delay associated with this mutation and present a human model for studying IQSEC2 mutations in vitro.


Asunto(s)
Trastorno Autístico , Epilepsia , Discapacidad Intelectual , Anciano , Trastorno Autístico/genética , Niño , Epilepsia/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Discapacidad Intelectual/genética , Mutación/genética , Neuronas/metabolismo , Transmisión Sináptica/genética
5.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234416

RESUMEN

Mutations in IQSEC2 cause intellectual disability (ID), which is often accompanied by seizures and autism. A number of studies have shown that IQSEC2 is an abundant protein in excitatory synapses and plays an important role in neuronal development as well as synaptic plasticity. Here, we review neuronal IQSEC2 signaling with emphasis on those aspects likely to be involved in autism. IQSEC2 is normally bound to N-methyl-D-aspartate (NMDA)-type glutamate receptors via post synaptic density protein 95 (PSD-95). Activation of NMDA receptors results in calcium ion influx and binding to calmodulin present on the IQSEC2 IQ domain. Calcium/calmodulin induces a conformational change in IQSEC2 leading to activation of the SEC7 catalytic domain. GTP is exchanged for GDP on ADP ribosylation factor 6 (ARF6). Activated ARF6 promotes downregulation of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors through a c-jun N terminal kinase (JNK)-mediated pathway. NMDA receptors, AMPA receptors, and PSD-95 are all known to be adversely affected in autism. An IQSEC2 transgenic mouse carrying a constitutively active mutation (A350V) shows autistic features and reduced levels of surface AMPA receptor subunit GluA2. Sec7 activity and AMPA receptor recycling are presented as two targets, which may respond to drug treatment in IQSEC2-associated ID and autism.


Asunto(s)
Trastorno Autístico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Discapacidad Intelectual/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Factores de Intercambio de Guanina Nucleótido/análisis , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética , Terapia Molecular Dirigida , Mutación/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
6.
Front Mol Neurosci ; 12: 43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30842726

RESUMEN

We have recently described an A350V mutation in IQSEC2 associated with intellectual disability, autism and epilepsy. We sought to understand the molecular pathophysiology of this mutation with the goal of developing targets for drug intervention. We demonstrate here that the A350V mutation results in interference with the binding of apocalmodulin to the IQ domain of IQSEC2. We further demonstrate that this mutation results in constitutive activation of the guanine nucleotide exchange factor (GEF) activity of IQSEC2 resulting in increased production of the active form of Arf6. In a CRISPR generated mouse model of the A350V IQSEC2 mutation, we demonstrate that the surface expression of GluA2 AMPA receptors in mouse hippocampal tissue was significantly reduced in A350V IQSEC2 mutant mice compared to wild type IQSEC2 mice and that there is a significant reduction in basal synaptic transmission in the hippocampus of A350V IQSEC2 mice compared to wild type IQSEC2 mice. Finally, the A350V IQSEC2 mice demonstrated increased activity, abnormal social behavior and learning as compared to wild type IQSEC2 mice. These findings suggest a model of how the A350V mutation in IQSEC2 may mediate disease with implications for targets for drug therapy. These studies provide a paradigm for a personalized approach to precision therapy for a disease that heretofore has no therapy.

7.
Neurobiol Learn Mem ; 154: 5-11, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29438741

RESUMEN

Metaplasticity is the dynamic regulation of the ability to induce activity-dependent synaptic plasticity and is governed by the prior history of the synapses. Previous reports by others and us have shown that behavioral stress induces a form of emotional metaplasticity that affects the ability to induce LTP in the subiculum-medial prefrontal cortex pathway, which depends on NMDA receptors (NMDAr). However, studies addressing the effects of stress on LTP and metaplasticity have mainly focused on the adult animal. Here we compared the effects of exposure to stress on the induction of LTP in adult and juvenile animals and examined whether a low dose of NMDAr antagonist (MK801) that does not affect LTP per se would differentially affect stress-induced metaplasticity in adult and juvenile animals. Our findings show that exposure to the elevated platform differentially affects the induction of LTP in adult and juvenile animals. Specifically, whereas exposure to stress resulted in impaired LTP in adult animals, it resulted in enhanced LTP in juvenile animals. Similarly, while MK801 failed to inhibit the induction of LTP in both age groups, it resulted in inhibition of stress-induced enhanced LTP in juvenile animals, but did not affect stress-induced impaired LTP in adult animals. Taken together, these findings demonstrate that emotional metaplasticity is differently dependent on NMDAr in adult and juvenile animals that may stem from developmental differences in the NMDA receptor representation. These results further confirm that the mechanisms of plasticity following stress are distinctive in the two groups of age.


Asunto(s)
Emociones/fisiología , Potenciación a Largo Plazo , Corteza Prefrontal/fisiología , Estrés Psicológico , Factores de Edad , Animales , Maleato de Dizocilpina/administración & dosificación , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Corteza Prefrontal/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...