Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Diagnostics (Basel) ; 13(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37568901

RESUMEN

Cervical cancer is one of the most common types of malignant tumors in women. In addition, it causes death in the latter stages. Squamous cell carcinoma is the most common and aggressive form of cervical cancer and must be diagnosed early before it progresses to a dangerous stage. Liquid-based cytology (LBC) swabs are best and most commonly used for cervical cancer screening and are converted from glass slides to whole-slide images (WSIs) for computer-assisted analysis. Manual diagnosis by microscopes is limited and prone to manual errors, and tracking all cells is difficult. Therefore, the development of computational techniques is important as diagnosing many samples can be done automatically, quickly, and efficiently, which is beneficial for medical laboratories and medical professionals. This study aims to develop automated WSI image analysis models for early diagnosis of a cervical squamous cell dataset. Several systems have been designed to analyze WSI images and accurately distinguish cervical cancer progression. For all proposed systems, the WSI images were optimized to show the contrast of edges of the low-contrast cells. Then, the cells to be analyzed were segmented and isolated from the rest of the image using the Active Contour Algorithm (ACA). WSI images were diagnosed by a hybrid method between deep learning (ResNet50, VGG19 and GoogLeNet), Random Forest (RF), and Support Vector Machine (SVM) algorithms based on the ACA algorithm. Another hybrid method for diagnosing WSI images by RF and SVM algorithms is based on fused features of deep-learning (DL) models (ResNet50-VGG19, VGG19-GoogLeNet, and ResNet50-GoogLeNet). It is concluded from the systems' performance that the DL models' combined features help significantly improve the performance of the RF and SVM networks. The novelty of this research is the hybrid method that combines the features extracted from deep-learning models (ResNet50-VGG19, VGG19-GoogLeNet, and ResNet50-GoogLeNet) with RF and SVM algorithms for diagnosing WSI images. The results demonstrate that the combined features from deep-learning models significantly improve the performance of RF and SVM. The RF network with fused features of ResNet50-VGG19 achieved an AUC of 98.75%, a sensitivity of 97.4%, an accuracy of 99%, a precision of 99.6%, and a specificity of 99.2%.

2.
Diagnostics (Basel) ; 13(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37443652

RESUMEN

Malignant lymphoma is one of the most severe types of disease that leads to death as a result of exposure of lymphocytes to malignant tumors. The transformation of cells from indolent B-cell lymphoma to B-cell lymphoma (DBCL) is life-threatening. Biopsies taken from the patient are the gold standard for lymphoma analysis. Glass slides under a microscope are converted into whole slide images (WSI) to be analyzed by AI techniques through biomedical image processing. Because of the multiplicity of types of malignant lymphomas, manual diagnosis by pathologists is difficult, tedious, and subject to disagreement among physicians. The importance of artificial intelligence (AI) in the early diagnosis of malignant lymphoma is significant and has revolutionized the field of oncology. The use of AI in the early diagnosis of malignant lymphoma offers numerous benefits, including improved accuracy, faster diagnosis, and risk stratification. This study developed several strategies based on hybrid systems to analyze histopathological images of malignant lymphomas. For all proposed models, the images and extraction of malignant lymphocytes were optimized by the gradient vector flow (GVF) algorithm. The first strategy for diagnosing malignant lymphoma images relied on a hybrid system between three types of deep learning (DL) networks, XGBoost algorithms, and decision tree (DT) algorithms based on the GVF algorithm. The second strategy for diagnosing malignant lymphoma images was based on fusing the features of the MobileNet-VGG16, VGG16-AlexNet, and MobileNet-AlexNet models and classifying them by XGBoost and DT algorithms based on the ant colony optimization (ACO) algorithm. The color, shape, and texture features, which are called handcrafted features, were extracted by four traditional feature extraction algorithms. Because of the similarity in the biological characteristics of early-stage malignant lymphomas, the features of the fused MobileNet-VGG16, VGG16-AlexNet, and MobileNet-AlexNet models were combined with the handcrafted features and classified by the XGBoost and DT algorithms based on the ACO algorithm. We concluded that the performance of the two networks XGBoost and DT, with fused features between DL networks and handcrafted, achieved the best performance. The XGBoost network based on the fused features of MobileNet-VGG16 and handcrafted features resulted in an AUC of 99.43%, accuracy of 99.8%, precision of 99.77%, sensitivity of 99.7%, and specificity of 99.8%. This highlights the significant role of AI in the early diagnosis of malignant lymphoma, offering improved accuracy, expedited diagnosis, and enhanced risk stratification. This study highlights leveraging AI techniques and biomedical image processing; the analysis of whole slide images (WSI) converted from biopsies allows for improved accuracy, faster diagnosis, and risk stratification. The developed strategies based on hybrid systems, combining deep learning networks, XGBoost and decision tree algorithms, demonstrated promising results in diagnosing malignant lymphoma images. Furthermore, the fusion of handcrafted features with features extracted from DL networks enhanced the performance of the classification models.

3.
Comput Math Methods Med ; 2022: 8330833, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633922

RESUMEN

Cancer is considered one of the most aggressive and destructive diseases that shortens the average lives of patients. Misdiagnosed brain tumours lead to false medical intervention, which reduces patients' chance of survival. Accurate early medical diagnoses of brain tumour are an essential point for starting treatment plans that improve the survival of patients with brain tumours. Computer-aided diagnostic systems have provided consecutive successes for helping medical doctors make accurate diagnoses and have conducted positive strides in the field of deep and machine learning. Deep convolutional layers extract strong distinguishing features from the regions of interest compared with those extracted using traditional methods. In this study, different experiments are performed for brain tumour diagnosis by combining deep learning and traditional machine learning techniques. AlexNet and ResNet-18 are used with the support vector machine (SVM) algorithm for brain tumour classification and diagnosis. Brain tumour magnetic resonance imaging (MRI) images are enhanced using the average filter technique. Then, deep learning techniques are applied to extract robust and important deep features via deep convolutional layers. The process of combining deep and machine learning techniques starts, where features are extracted using deep learning techniques, namely, AlexNet and ResNet-18. These features are then classified using SoftMax and SVM. The MRI dataset contains 3,060 images divided into four classes, which are three tumours and one normal. All systems have achieved superior results. Specifically, the AlexNet+SVM hybrid technique exhibits the best performance, with 95.10% accuracy, 95.25% sensitivity, and 98.50% specificity.


Asunto(s)
Neoplasias Encefálicas , Detección Precoz del Cáncer , Neoplasias Encefálicas/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Máquina de Vectores de Soporte
4.
Comput Math Methods Med ; 2022: 3941049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419082

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with brain development that subsequently affects the physical appearance of the face. Autistic children have different patterns of facial features, which set them distinctively apart from typically developed (TD) children. This study is aimed at helping families and psychiatrists diagnose autism using an easy technique, viz., a deep learning-based web application for detecting autism based on experimentally tested facial features using a convolutional neural network with transfer learning and a flask framework. MobileNet, Xception, and InceptionV3 were the pretrained models used for classification. The facial images were taken from a publicly available dataset on Kaggle, which consists of 3,014 facial images of a heterogeneous group of children, i.e., 1,507 autistic children and 1,507 nonautistic children. Given the accuracy of the classification results for the validation data, MobileNet reached 95% accuracy, Xception achieved 94%, and InceptionV3 attained 0.89%.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Aprendizaje Profundo , Trastorno del Espectro Autista/diagnóstico , Trastorno Autístico/diagnóstico , Niño , Humanos , Redes Neurales de la Computación
5.
Comput Math Methods Med ; 2021: 8500314, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966445

RESUMEN

Cardiovascular disease (CVD) is one of the most common causes of death that kills approximately 17 million people annually. The main reasons behind CVD are myocardial infarction and the failure of the heart to pump blood normally. Doctors could diagnose heart failure (HF) through electronic medical records on the basis of patient's symptoms and clinical laboratory investigations. However, accurate diagnosis of HF requires medical resources and expert practitioners that are not always available, thus making the diagnosing challengeable. Therefore, predicting the patients' condition by using machine learning algorithms is a necessity to save time and efforts. This paper proposed a machine-learning-based approach that distinguishes the most important correlated features amongst patients' electronic clinical records. The SelectKBest function was applied with chi-squared statistical method to determine the most important features, and then feature engineering method has been applied to create new features correlated strongly in order to train machine learning models and obtain promising results. Optimised hyperparameter classification algorithms SVM, KNN, Decision Tree, Random Forest, and Logistic Regression were used to train two different datasets. The first dataset, called Cleveland, consisted of 303 records. The second dataset, which was used for predicting HF, consisted of 299 records. Experimental results showed that the Random Forest algorithm achieved accuracy, precision, recall, and F1 scores of 95%, 97.62%, 95.35%, and 96.47%, respectively, during the test phase for the second dataset. The same algorithm achieved accuracy scores of 100% for the first dataset and 97.68% for the second dataset, while 100% precision, recall, and F1 scores were reached for both datasets.


Asunto(s)
Algoritmos , Insuficiencia Cardíaca/diagnóstico , Aprendizaje Automático , Adulto , Anciano , Anciano de 80 o más Años , Distribución de Chi-Cuadrado , Biología Computacional , Bases de Datos Factuales , Árboles de Decisión , Diagnóstico por Computador/estadística & datos numéricos , Registros Electrónicos de Salud/estadística & datos numéricos , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Máquina de Vectores de Soporte
6.
J Healthc Eng ; 2021: 1004767, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211680

RESUMEN

Chronic kidney disease (CKD) is among the top 20 causes of death worldwide and affects approximately 10% of the world adult population. CKD is a disorder that disrupts normal kidney function. Due to the increasing number of people with CKD, effective prediction measures for the early diagnosis of CKD are required. The novelty of this study lies in developing the diagnosis system to detect chronic kidney diseases. This study assists experts in exploring preventive measures for CKD through early diagnosis using machine learning techniques. This study focused on evaluating a dataset collected from 400 patients containing 24 features. The mean and mode statistical analysis methods were used to replace the missing numerical and the nominal values. To choose the most important features, Recursive Feature Elimination (RFE) was applied. Four classification algorithms applied in this study were support vector machine (SVM), k-nearest neighbors (KNN), decision tree, and random forest. All the classification algorithms achieved promising performance. The random forest algorithm outperformed all other applied algorithms, reaching an accuracy, precision, recall, and F1-score of 100% for all measures. CKD is a serious life-threatening disease, with high rates of morbidity and mortality. Therefore, artificial intelligence techniques are of great importance in the early detection of CKD. These techniques are supportive of experts and doctors in early diagnosis to avoid developing kidney failure.


Asunto(s)
Inteligencia Artificial , Insuficiencia Renal Crónica , Adulto , Algoritmos , Humanos , Aprendizaje Automático , Insuficiencia Renal Crónica/diagnóstico , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA