Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomater Sci ; 5(11): 2212-2225, 2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-28901350

RESUMEN

In the last decade, magnetic nanoparticles (MNPs), especially superparamagnetic iron oxide nanoparticles (SPIONs), have immensely promoted the advancement of diagnostics and theranostics in the biomedical field. The unique properties of the SPIONs-core and the functional gold (Au)-shell together (SPIONS/Au core/shell or CS) have a wide range of biomedical applications including, but not limited to, magnetic resonance imaging (MRI), dual modality MRI/computed tomography (CT), photo-induced and magnetic fluid hyperthermia (MFH), drug delivery, biosensors, and bio-separation. Researchers have made much effort to develop synthesis strategies for size control and surface modifications to achieve the desired properties of these CSs for applications in in vitro and in vivo studies. This review highlights recent developments in the synthesis and biomedical applications of SPIONs/Au CSs, including γ-Fe2O3/Au (maghemite), Fe3O4/Au (magnetite), and MFe2O4/Au (M = divalent metal ions) in the past seven years. More importantly, current trends of SPIONs/Au in relation to the biochemical industry are surveyed. Finally, we outline the developmental needs of SPIONs/Au from the perspective of material synthesis and their novel applications in disease diagnosis and treatment in the near future.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Técnicas de Química Sintética/métodos , Compuestos Férricos/química , Oro/química , Imanes/química , Nanopartículas/química , Animales , Materiales Biocompatibles/uso terapéutico , Humanos
2.
J Mater Sci Mater Med ; 26(3): 127, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25690622

RESUMEN

Superparamagnetic nanoferrites are prepared by simple and one step refluxing in polyol synthesis. The ferrite nanoparticles prepared by this method exhibit particle sizes below 10 nm and high degree of crystallinity. These ferrite nanoparticles are compared by means of their magnetic properties, induction heating and cell viability studies for its application in magnetic fluid hyperthermia. Out of all studied nanoparticles in present work, only ZnFe2O4 and CoFe2O4 MNPs are able to produce threshold hyperthermia temperature. This rise in temperature is discussed in detail in view of their magneto-structural properties. Therefore ZnFe2O4 and CoFe2O4 MNPs with improved stability, magnetic induction heating and cell viability are suitable candidates for magnetic hyperthermia.


Asunto(s)
Calor , Hipertermia Inducida , Magnetismo , Nanopartículas del Metal , Neoplasias/terapia , Línea Celular Tumoral , Humanos , Microscopía Electrónica de Transmisión , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA