Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(18): 12496-12510, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38630640

RESUMEN

Nuclear forward scattering (NFS) is a synchrotron-based technique relying on the recoil-free nuclear resonance effect similar to Mössbauer spectroscopy. In this work, we introduce NFS for in situ and operando measurements during electrocatalytic reactions. The technique enables faster data acquisition and better discrimination of certain iron sites in comparison to Mössbauer spectroscopy. It is directly accessible at various synchrotrons to a broad community of researchers and is applicable to multiple metal isotopes. We demonstrate the power of this technique with the hydrogen evolution mechanism of an immobilized iron porphyrin supported on carbon. Such catalysts are often considered as model systems for iron-nitrogen-carbon (FeNC) catalysts. Using in situ and operando NFS in combination with theoretical predictions of spectroscopic data enables the identification of the intermediate that is formed prior to the rate-determining step. The conclusions on the reaction mechanism can be used for future optimization of immobilized molecular catalysts and metal-nitrogen-carbon (MNC) catalysts.

2.
Small ; 19(14): e2205412, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36653934

RESUMEN

The novel material class of high entropy oxides with their unique and unexpected physicochemical properties is a candidate for energy applications. Herein, it is reported for the first time about the physico- and (photo-) electrochemical properties of ordered mesoporous (CoNiCuZnMg)Fe2 O4 thin films synthesized by a soft-templating and dip-coating approach. The A-site high entropy ferrites (HEF) are composed of periodically ordered mesopores building a highly accessible inorganic nanoarchitecture with large specific surface areas. The mesoporous spinel HEF thin films are found to be phase-pure and crack-free on the meso- and macroscale. The formation of the spinel structure hosting six distinct cations is verified by X-ray-based characterization techniques. Photoelectron spectroscopy gives insight into the chemical state of the implemented transition metals supporting the structural characterization data. Applied as photoanode for photoelectrochemical water splitting, the HEFs are photostable over several hours but show only low photoconductivity owing to fast surface recombination, as evidenced by intensity-modulated photocurrent spectroscopy. When applied as oxygen evolution reaction electrocatalyst, the HEF thin films possess overpotentials of 420 mV at 10 mA cm-2 in 1 m KOH. The results imply that the increase of the compositional disorder enhances the electronic transport properties, which are beneficial for both energy applications.

3.
Chemistry ; 29(10): e202202465, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36301727

RESUMEN

For a future hydrogen economy, non-precious metal catalysts for the water splitting reactions are needed that can be implemented on a global scale. Metal-nitrogen-carbon (MNC) catalysts with active sites constituting a metal center with fourfold coordination of nitrogen (MN4 ) show promising performance, but an optimization rooted in structure-property relationships has been hampered by their low structural definition. Porphyrin model complexes are studied to transfer insights from well-defined molecules to MNC systems. This work combines experiment and theory to evaluate the influence of porphyrin substituents on the electronic and electrocatalytic properties of MN4 centers with respect to the hydrogen evolution reaction (HER) in aqueous electrolyte. We found that the choice of substituent affects their utilization on the carbon support and their electrocatalytic performance. We propose an HER mechanism for supported iron porphyrin complexes involving a [FeII (P⋅)]- radical anion intermediate, in which a porphinic nitrogen atom acts as an internal base. While this work focuses on the HER, the limited influence of a simultaneous interaction with the support and an aqueous electrolyte will likely be transferrable to other catalytic applications.

4.
Materials (Basel) ; 15(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36234240

RESUMEN

In this study we present gas-phase fluorination as a method to create a thin LiF layer on Li6.5La3Zr1.5Ta0.5O12 (LLZTO). We compared these fluorinated films with LiF films produced by RF-magnetron sputtering, where we investigated the interface between the LLZTO and the deposited LiF showing no formation of a reaction layer. Furthermore, we investigated the ability of this LiF layer as a protection layer against Li2CO3 formation in ambient air. By this, we show that Li2CO3 formation is absent at the LLZTO surface after 24 h in ambient air, supporting the protective character of the formed LiF films, and hence potentially enhancing the handling of LLZTO in air for battery production. With respect to the use within hybrid electrolytes consisting of LLZTO and a mixture of polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), we also investigated the interface between the formed LiF films and a mixture of PEO+LiTFSI by X-ray photoelectron spectroscopy (XPS), showing decomposition of the LiTFSI at the interface.

5.
ACS Appl Mater Interfaces ; 14(41): 47255-47261, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36209433

RESUMEN

Stable InP (001) surfaces are characterized by fully occupied and empty surface states close to the bulk valence and conduction band edges, respectively. The present photoemission data show, however, a surface Fermi level pinning only slightly below the midgap energy which gives rise to an appreciable surface band bending. By means of density functional theory calculations, it is shown that this apparent discrepancy is due to surface defects that form at finite temperature. In particular, the desorption of hydrogen from metalorganic vapor phase epitaxy grown P-rich InP (001) surfaces exposes partially filled P dangling bonds that give rise to band gap states. These defects are investigated with respect to surface reactivity in contact with molecular water by low-temperature water adsorption experiments using photoemission spectroscopy and are compared to our computational results. Interestingly, these hydrogen-related gap states are robust with respect to water adsorption, provided that water does not dissociate. Because significant water dissociation is expected to occur at steps rather than terraces, surface band bending of a flat InP (001) surface is not affected by water exposure.

6.
ACS Appl Mater Interfaces ; 13(26): 31111-31128, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34161723

RESUMEN

Composite electrolytes comprising a polymer plus Li salt matrix and embedded fillers have the potential of realizing high lithium-ion conductivity, good mechanical properties, wide electrochemical operational window, and stability against metallic lithium, all of which are essential for the development of high-energy-density all-solid-state lithium-ion batteries. In this study, a solvent-free approach has been used to prepare composite electrolytes with tetragonal and cubic phase garnets synthesized via nebulized spray pyrolysis with polyethylene oxide (PEO) being the polymer component. Electrochemical impedance spectroscopy (EIS) is used to examine a series of composites with different garnets and weight fractions. The results show that with the increase in the ceramic weight fraction in the composites, ionic conductivity is reduced and alternative Li-ion transport pathways become accessible for composites as compared to the filler-free electrolytes. An attempt is made to understand the ion transport mechanism within the composites. The role of the chemical and morphological properties of the ceramic filler in polymer-rich and ceramic-rich composite electrolytes is explained by studying the blends of nonconducting ceramics with the Li-conducting polymer, indicating that the intrinsic conductivity of the ceramic filler significantly contributes to the overall conductive process in the ceramic-rich systems. Further, the stability of the garnet/PEO interface is studied via X-ray photoelectron spectroscopy, and its impact on the lithium-ion transport is studied using EIS.

7.
ACS Appl Mater Interfaces ; 13(13): 15292-15304, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33764733

RESUMEN

One of the great challenges of hybrid organic-inorganic perovskite photovoltaics is the material's stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI3) and formamidinium cesium lead iodide (FACsPbI3) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.

8.
ACS Appl Mater Interfaces ; 13(4): 5895-5906, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33482058

RESUMEN

Understanding the interfacial impedance between the solid electrolyte and the electrode is a critical issue for the design of solid-state batteries. We propose a new equivalent circuit model that treats the interface not only as a capacitor but also includes the space charge layer resistance and the resultant polarization resistance. Moreover, the elements of the circuit model are quantified by the physical quantities based on the recently proposed modified Planck-Nernst-Poisson (MPNP) model, which includes the effect of the unoccupied regular lattice sites (vacancies) in the electro-diffusion problem and takes both the ion and electron contributions into the account. We provide a new analytical solution for the space charge layer capacitance. Comparative numerical results demonstrate that our proposed model with additional polarization resistance can explain well the real impedance tail at the low-frequency region, for which the pure capacitor interface model fails. The model is verified against the experimental impedance spectra of LiPON.

9.
ACS Appl Mater Interfaces ; 12(48): 53910-53920, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33207876

RESUMEN

Facet-engineered monoclinic scheelite BiVO4 particles decorated with various cocatalysts were successfully synthesized by selective sunlight photodeposition of metal or metal oxy(hydroxide) nanoparticles onto the facets of truncated bipyramidal BiVO4 monoclinic crystals coexposing {010} and {110} facets. X-ray photoelectron spectroscopy, scanning electron microscopy, and scanning Auger microscopy revealed that metallic silver (Ag) and cobalt (oxy)hydroxide (CoOx(OH)y) particles were selectively deposited onto the {010} and {110} facets, respectively, regardless of the cocatalyst amount. By contrast, the nickel (oxy)hydroxide (NiOx(OH)y) photodeposition depends on the nickel precursor amount with an unprecedented selectivity for 0.1 wt % NiOx(OH)y/BiVO4 with a preferential deposition onto the {010} facets and the edges between the {110} facets. Moreover, these noble metal-free heterostructures led to remarkable photocatalytic properties for rhodamine B photodecomposition and sacrificial water oxidation reactions. For instance, 0.2 wt % CoOx(OH)y/BiVO4 led to one of the highest oxygen evolution rates, i.e., 1538 µmol h-1 g-1, ever described which is ten times higher than that found for bare BiVO4. The selective deposition of cobalt (oxy)hydroxide species onto the more electron-deficient facet of truncated bipyramidal monoclinic BiVO4 particles favors photogenerated charge carrier separation and therefore plays a key role for efficient photochemical oxygen evolution.

10.
ACS Appl Mater Interfaces ; 12(36): 40949-40957, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32794739

RESUMEN

The surface, interface, and bulk properties are a few of the most critical factors that influence the performance of perovskite solar cells. The photoelectron spectroscopy (PES) is used as a technique to analyze these properties. However, the information depth of PES is limited to 10-20 nm, which makes it not suitable to study the complete devices, which have a thickness of ∼1 µm. Here, we introduce a novel and simple technique of PES on a tapered cross section (TCS-PES). It provides both lateral and vertical resolutions compared to the conventional PES so that it is suitable to study a complete perovskite solar cell. It offers many benefits over conventional PES methods such as the chemical composition in the micrometer scale from the surface to the bulk and the electronic properties at the multiple interfaces. The chemical natures of different layers of the perovskite-based solar cells [(FAPbI3)0.85(MAPbBr3)0.15] can be identified precisely for the first time using the TCS-PES method. We found that the perovskite layer has higher iodine concentration at the Spiro/perovskite interface and higher bromine concentration at the TiO2/perovskite interface. UPS measurements on the tapered cross section revealed that the perovskite is n-type, and the solar cell studied here is a p-n-n structure type device. The unique possibilities to analyze the complete solar cell by XPS and UPS allow us to estimate the band bending in a working solar cell. Moreover, this technique can further be used to study the device under operating conditions, and it can be applied in other solid-state devices like solid electrolyte Li-ion batteries, LEDs, or photoelectrodes.

11.
J Phys Chem Lett ; 11(10): 3754-3760, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32301321

RESUMEN

We demonstrate that key parameters for efficient electrocatalytic oxidation of water are the energetics of the redox complexes associated with their ionization and electrochemical potentials coupled to the change of metal-oxygen band hybridization. We investigate the catalytic activity of the LiCoPO4-LiCo2P3O10 tailored compound, which is a 5 V cathode material for Li-ion batteries. The reason for the weak catalytic activity of the lithiated compound toward the oxygen evolution reaction is a large energy difference between the electronic states involved in the electrochemical reaction. A highly active catalyst is obtained by tuning the relative energetic position of the electronic levels involved in the charge transfer reaction, which in turn are governed by the lithium content. A significant lowering of the overpotential from >550 mV to ∼370 mV at 10 mA cm-2 is achieved via a decrease of the ionization potential and shifting the electrochemical potential near the electronic states of the molecule, thereby facilitating water oxidation.

12.
ACS Appl Mater Interfaces ; 12(5): 6565-6572, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31825591

RESUMEN

Conformationally rigid multipodal molecules should control the orientation and packing density of functional head groups upon self-assembly on solid supports. Common tripods frequently fail in this regard because of inhomogeneous bonding configuration and stochastic orientation. These issues are circumvented by a suitable tetrapodal diazatriptycene moiety, bearing four thiol-anchoring groups, as demonstrated in the present study. Such molecules form well-defined self-assembled monolayers (SAMs) on Au(111) substrates, whereby the tetrapodal scaffold enforces a nearly upright orientation of the terminal head group with respect to the substrate, with at least three of the four anchoring groups providing thiolate-like covalent attachment to the surface. Functionalization by condensation chemistry allows a large variety of functional head groups to be introduced to the tetrapod, paving the path toward advanced surface engineering and sensor fabrication.

13.
Inorg Chem ; 58(24): 16609-16617, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31769972

RESUMEN

The use of low-temperature solution synthesis followed by a brief annealing step allows metastable single-phase Co3B nanoparticles to be obtained, with sizes ranging from 11 to 22 nm. The particles are ferromagnetic with a saturation magnetization of 91 A m2 kg-1 (corresponding to 1.02 µB/Co) and a coercive field of 0.14 T at 5 K, retaining the semihard magnetic properties of bulk Co3B. They display a magnetic blocking temperature of 695 K and a Curie temperature near 710 K, but the measurement of these high-temperature properties was complicated by decomposition of the particles during heating in the magnetometer. Additionally, the nanoparticles of Co3B were investigated as an electrocatalyst in the oxygen evolution reaction and showed a low onset potential of 1.55 V vs RHE. XPS measurements were performed before and after the electrocatalytic measurements to study the surface of the catalyst, to pinpoint what appear to be the active surface species.

14.
Phys Chem Chem Phys ; 21(9): 5086-5096, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30762849

RESUMEN

The formation of heterostructures has proven to be a viable way to achieve high photoelectrochemical water splitting efficiencies with BiVO4 based photoanodes. Especially, cobalt and nickel based oxides are suitable low cost contact materials. However, the exact role of these contact materials is not yet completely understood because of the difficulty to individually quantify the effects of surface passivation, charge carrier separation and catalysis on the efficiency of a heterostructure. In this study, we used photoelectron spectroscopy in combination with in situ thin film deposition to obtain direct information on the interface structure between polycrystalline BiVO4 and NiO, CoOx and Sn-doped In2O3 (ITO). Strong upwards band bending was observed for the BiVO4/NiO and BiVO4/CoOx interfaces without observing chemical changes in BiVO4, while limited band bending and reduction of Bi and V was observed while forming the BiVO4/ITO interface. Thus, the tunability of the Fermi level position within BiVO4 seems to be limited to a certain range. The feasibility of high upwards band bending through junctions with high work function (WF) compounds demonstrate that nickel oxide and cobalt oxide are able to enhance the charge carrier separation in BiVO4. Similar studies could help to identify whether new photoelectrode materials and their heterostructures would be suitable for photoelectrochemical water splitting.

15.
Nat Commun ; 9(1): 4794, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420751

RESUMEN

The original version of this Article contained an error in Fig. 2b in which the bottom of the pink-shaded conduction band region was incorrectly positioned at a value of 1.75 eV. The correct conduction band minimum has a value of 2.2 eV. This has now been corrected in both the PDF and HTML versions of the Article.

16.
Nat Commun ; 9(1): 4309, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333488

RESUMEN

The optical band gap is a major selection criterion for an absorber in photocatalytic water splitting. Due to its ideal value hematite has been intensively investigated without reaching the expectation, yet. In this work, the Fermi level positions in hematite due to doping and contact formation are investigated. An upper boundary for the Fermi level position at 1.8 eV above the valence band maximum due to the formation of polarons is identified. This results in a different concept of the effective band gap for hematite which we believe is transferable to any material with competing polaron formation after optical excitation: the optical band gap of 2.2 eV deviates from an effective electronic band gap of 1.75 eV. The polaron state acts as a limit in (quasi-)Fermi level shift, restricting the potential of charge transfer reactions. Additionally, it has led to an incorrect determination of the band edge positions of hematite in electrochemical contacts.

17.
Nanomaterials (Basel) ; 8(9)2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30200568

RESUMEN

In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO2-coated ZnO nanowires were synthesized. Analysis by means of high-resolution transmission electron microscopy revealed a highly crystalline structure of the electrodeposited ZnO wires and the anatase phase of the TiO2 coating. In photoelectrochemical measurements, the ZnO and ZnO/TiO2 nanowire networks, used as anodes, generated higher photocurrents compared to those produced by their film counterparts. The ZnO/TiO2 nanowire network exhibited the highest photocurrents. However, the protection by the TiO2 coatings against chemical corrosion still needs improvement. The one-dimensionality of the nanowires and the large electrolyte-accessible area make these 3D networks promising photoelectrodes, due to the improved transport properties of photogenerated charge carriers and faster redox reactions at the surface. Moreover, they can find further applications in e.g., sensing, catalytical, and piezoelectric devices.

18.
Rev Sci Instrum ; 89(7): 073104, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30068114

RESUMEN

A model all-solid-state battery cell with a thin film NaxCoO2 cathode was assembled under ultra-high vacuum conditions and cycled inside the vacuum chamber, using a dedicated sample holder. We present in-operando x-ray photoelectron spectroscopy measurements of a NaxCoO2 cathode at different charging states. During battery operation, the change in sodium content, the change in cobalt oxidation state, and the evolution of the O1s and VB emissions could be monitored. Comparison with a conventional post-mortem analysis technique showed that the new measurement technique produces comparable results regarding the oxidation state of the transition metal, but sodium and oxygen results show differences due to cathode/electrolyte interfacial reactions for conventional analysis. By using surface layer-free samples in the presented techniques, we could circumvent such reactions and obtain reliable spectra for the pure bulk-like active cathode material.

19.
Phys Chem Chem Phys ; 20(32): 21144-21150, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30079411

RESUMEN

High-resolution surface-sensitive synchrotron radiation photoelectron spectroscopy was used to study the interaction of water with the p-GaInP2(100) surface covered with submonolayer residual native oxide in order to get insight into water dissociation at the solar water-splitting photocathodes in real liquid environment. In the surface-sensitive valence band spectra features related to Ga-OH, In-OH, and H-In-OH bonds appear after emersion of the p-GaInP2(100) surface from liquid water at room temperature. Indium core levels remain intact after emersion, while the gallium core levels indicate transformation of gallium oxides to hydroxides, as well as the accumulation of metallic gallium. Surface sensitive P 2p core level spectra indicate formation of P-H bonds after emersion. These changes of the surface chemical bonds can be attributed to the dissociation of the water molecules on the p-GaInP2(100) surface, leading to the subsequent transformation of surface oxides to hydroxides. Interaction of water with the p-GaInP2(100) surface covered with submonolayer residual native oxide causes an increase in the work function by 80 meV and a modification of the valence band edge spectrum, which is evidence of a change of the surface dipole due to the charge redistribution induced by the transformation of the surface oxides to hydroxides.

20.
ChemSusChem ; 11(18): 3150-3156, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30047577

RESUMEN

High-performance catalysts for the oxygen-evolution reaction in water electrolysis are usually based on expensive and rare elements. Herein, mixed-metal borides are shown to be competitive with established electrocatalysts like noble metal oxides and other transition-metal(oxide)-based catalysts. Iron incorporation into nanoscale dicobalt boride results in excellent activity and stability in alkaline solutions. (Co0.7 Fe0.3 )2 B shows an overpotential of η=0.33 V (1.56 V vs. RHE) at 10 mA cm-2 in 1 m KOH with a very low onset potential of ≈1.5 V vs. RHE, comparable to the performance of IrO2 and RuO2 . XPS shows that the original catalyst is modified under the reaction conditions and indicates that CoOOH and Co(OH)2 are formed as active surface species, whereas the Fe remains in the catalyst, contributing to an improved catalyst performance. The nanoscale borides are obtained by a one-step solution synthesis, calcined, and characterized by XRD, energy-dispersive X-ray spectroscopy, and SEM. Single crystals of (Co1-x Fex )2 B grown under chemical transport conditions were used for an unambiguous specification of the nanostructured particles by relating the cobalt/iron ratio to the lattice parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...