Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36676431

RESUMEN

The present study described three synthesis routes using different natural polysaccharides as low-cost non-toxic fuels and complexing agents for obtaining MgO. Cassava starch, Aloe vera leaves (mainly acemannan) gel, and citric pectin powder were mixed with magnesium nitrate salt and calcined at 750 °C for 2 h. The samples were named according to the polysaccharide: cassava starch (MgO-St), citrus pectin (MgO-CP), and Aloe vera (MgO-Av). X-ray diffraction identified the formation of a monophasic periclase structure (FCC type) for the three samples. The N2 adsorption/desorption isotherms (B.E.T. method) showed an important difference in textural properties, with a higher pore volume (Vmax = 89.76 cc/g) and higher surface area (SA = 43.93 m2/g) obtained for MgO-St, followed by MgO-CP (Vmax = 11.01 cc/g; SA = 7.01 m2/g) and MgO-Av (Vmax = 6.44 cc/g; SA = 6.63 m2/g). These data were consistent with the porous appearance observed in SEM images. Porous solids are interesting as adsorbents for removing metallic and molecular ions from wastewater. The removal of copper ions from water was evaluated, and the experimental data at equilibrium were adjusted according to the Freundlich, Langmuir, and Temkin isotherms. According to the Langmuir model, the maximum adsorption capacity (qmax) was 6331.117, 5831.244, and 6726.623 mg·g-1 for the adsorbents MgO-St, MgO-Av, and MgO-CP, respectively. The results of the adsorption isotherms indicated that the synthesized magnesium oxides could be used to decrease the amount of Cu2+ ions in wastewater.

2.
Molecules ; 28(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36615339

RESUMEN

The synthesis of structured MgO is reported using feedstock starch (route I), citrus pectin (route II), and Aloe vera (route III) leaf, which are suitable for use as green fuels due to their abundance, low cost, and non-toxicity. The oxides formed showed high porosity and were evaluated as antimicrobial agents. The samples were characterized by energy-dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The crystalline periclase monophase of the MgO was identified for all samples. The SEM analyses show that the sample morphology depends on the organic fuel used during the synthesis. The antibacterial activity of the MgO-St (starch), MgO-CP (citrus pectin), and MgO-Av (Aloe vera) oxides was evaluated against pathogens Staphylococcus aureus (ATCC 6538P) and Escherichia coli (ATCC 8739). Antifungal activity was also studied against Candida albicans (ATCC 64548). The studies were carried out using the qualitative agar disk diffusion method and quantitative minimum inhibitory concentration (MIC) tests. The MIC of each sample showed the same inhibitory concentration of 400 µg. mL-1 for the studied microorganisms. The formation of inhibition zones and the MIC values in the antimicrobial analysis indicate the effective antimicrobial activity of the samples against the test microorganisms.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Óxido de Magnesio/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Microscopía Electrónica de Rastreo , Escherichia coli , Pruebas de Sensibilidad Microbiana , Almidón/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Difracción de Rayos X
3.
Front Chem ; 8: 571790, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330360

RESUMEN

Zinc Oxide nanoparticles have been synthesized by two simple routes using Aloe vera (green synthesis, route I) or Cassava starch (gelatinization, route II). The XRD patterns and Raman spectra show that both synthesis routes lead to single-phase ZnO. XPS results indicate the presence of zinc atoms with oxidation state Zn2+. SEM images of the ZnO nanoparticles synthesized using Cassava starch show the presence of pseudo-spherical nanoparticles and nanosheets, while just pseudo-spherical nanoparticles were observed when Aloe vera was used. The UV-Vis spectra showed a slight difference in the absorption edge of the ZnO particles obtained using Aloe vera (3.18 eV) and Cassava starch (3.24 eV). The ZnO nanoparticles were tested as adsorbents for the removal of copper in wastewater, it is shown that at low Cu2+ ion concentration (~40 mg/L) the nanoparticles synthesized by both routes have the same removal efficiency, however, increasing the absorbate concentration (> 80 mg/L) the ZnO nanoparticles synthesized using Aloe vera have a higher removal efficiency. The synthesized ZnO nanoparticles can be used as effective and environmental-friendly metal trace absorbers in wastewater.

4.
Enzyme Microb Technol ; 130: 109365, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31421722

RESUMEN

Layered double hydroxides (LDHs) are cheap materials suitable for immobilization of enzymes. In this study, we prepared Zn/Al-Cl LDHs with different Zn:Al molar ratios for immobilization of the lipase from Pseudomonas cepacia. The best values for activity retention (188%), immobilization efficiency (96%) and hydrolytic activity in organic medium (279 U g-1) were obtained with a molar ratio of Zn:Al of 4:1, a protein loading of 162 mg g-1 and Tris-HCl buffer (10 mmol L-1, pH 7.5) as the solvent for preparing the lipase solution. The immobilized lipase keeps its activity when stored at 4 °C during 30 days. The immobilized lipase gave a conversion of 50% in 1 h for the kinetic resolution of the alcohol rac-1-phenylethanol, with both ees and eep higher than 99% and E higher than 200. In the reutilization study, 30 successive 1-h kinetic resolutions were done with the same batch of immobilized enzyme. For all 30 resolutions, 50% conversion was maintained, with ees and eep higher than 99% and E higher than 200. These are promising results that lay the basis for further studies of immobilization of lipases onto LDHs for applications in organic media.


Asunto(s)
Aluminio/química , Compuestos de Anilina/química , Burkholderia cepacia/enzimología , Enzimas Inmovilizadas/metabolismo , Lipasa/metabolismo , Fenol/química , Alcohol Feniletílico/química , Zinc/química , Hidrólisis , Hidróxidos/química , Cinética
5.
Dalton Trans ; 47(9): 3068-3073, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29200223

RESUMEN

Several functional hybrid materials have been reported as immobilized porphyrin derivatives in various organic and inorganic host materials (polymers, mineral clays, silica, etc.), with potential applications in various fields, such as photochemistry, electrochemistry and heterogeneous catalysis. Layered double hydroxides (LDHs), commonly known as hydrotalcite-like materials, have also been analyzed for use as supports for metallocomplexes. Recently, nanocomposite materials with a core-shell structure produced by combining two kinds of nanometer-size materials have received considerable attention, since the use of these materials is a promising strategy to prevent the aggregation and self-oxidation of molecules, reducing the catalytic activity. In this study, monodispersed hierarchical layered double hydroxides on silica spheres (LDH@SiO2) with core-shell structures were developed for metalloporphyrin immobilization and the materials were used as the oxidant catalysts of different substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA