Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(2): 1150-1163, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38165764

RESUMEN

Anion-π interactions aiding in the adsorption of anions in the solution phase, though challenging to quantify, have attracted a lot of attention in supramolecular chemistry. We present the design of a polymer adsorbent that quantifies the adsorption of arsenate ions experimentally by optimizing anion-π interactions in a purely aqueous system and use density functional theory to compare these results with theoretical data. Arsenate anions are removed from water by amine-functionalized polydivinylbenzene using the comonomer 1-vinyl-1,2,4-triazole, which was cross-linked with divinylbenzene via radical polymerization in a hydrothermal procedure. The amine-functionalized polydivinylbenzene successfully removed arsenate anions from water with a capacity of 46 mg g-1, a 70% increase compared to the nonfunctionalized polydivinylbenzene (27 mg g-1) capacity under the same conditions. Adsorption is best described by the Sips isotherm model with a correlation coefficient R2 factor of 0.99, indicating that adsorption sites are homogeneous, and adsorption occurred by forming a monolayer. Kinetic studies indicated that adsorption is second order in the amine-functionalized polydivinylbenzene. Computational studies using density functional theory showed that the 1-vinyl-1,2,4-triazole comonomer improved the thermodynamic stability of the anionic-π interactions of polydivinylbenzene with arsenate anions. Electrostatic interactions dominate the mechanism of adsorption in polydivinylbenzene compared to the anion-induced interactions that dominate adsorption in amine-functionalized polydivinylbenzene.

2.
Molecules ; 27(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080292

RESUMEN

Human milk is an intricate, bioactive food promoting infant health. We studied the composition of human milk samples collected over an 8-month lactation using 1H NMR metabolomics. A total of 72 human breast milk samples were collected from ten Chinese mothers at eight different time points. The concentrations of ten human milk oligosaccharides (HMOs), fucose and lactose were quantified. Six of the mothers were classified as Lewis-positive secretors (Se+Le+) and four as Lewis-positive non-secretors (Se-Le+) based on the levels of 2'-fucosyllactose (2'-FL), lacto-N-fucopentaose (LNFP) II, lactodifucotetraose (LDFT) and lacto-N-neotetraose (LNnT). Acetate, citrate, short/medium-chain fatty acids, glutamine and urea showed a time-dependent trend in relation to the stage of lactation. The concentrations of 2'-FL, 3-FL (3-fucosyllactose), 3'-SL (3'-sialyllactose), LDFT, LNFP I, LNFP II, LNFP III, LNnT, LNT (lacto-N-tetraose), and fucose were statistically different between secretors and non-secretors. A temporal difference of approximately 1-2 months between the development of non-secretor and secretor HMO profiles was shown. The results highlighted the importance of long-term breastfeeding, especially among non-secretors.


Asunto(s)
Lactancia Materna , Leche Humana , China , Femenino , Fucosa/análisis , Humanos , Lactante , Lactancia , Leche Humana/química , Oligosacáridos/análisis , Espectroscopía de Protones por Resonancia Magnética
3.
Sci Rep ; 11(1): 19175, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584179

RESUMEN

Synthetic homogeneous system known to date performing methane to methanol conversion using O2 as terminal oxidant is unique and based on copper complex with piperazine-based ligand (Cu3L in Fig. 1) in a medium of acetonitrile. Prior work have shown that in order to achieve catalytic turnover, hydrogen peroxide is needed to regenerate the active site. We show in this paper that reaction solvent based on organic nitrile decompose concurrently with methane activation and that in the absence of either acetonitrile, Cu complex or hydrogen peroxide, the catalytic turnover does not happen. We show in this manuscript that the direct methane oxidation to methanol might have been mediated by catalytic Radziszewski oxidation between acetonitrile and H2O2. Additionally we have discovered that in the absence of methane, peroxide mediated acetonitrile decomposition also makes methanol via a background reaction which was hitherto unknown.

4.
Trends Biotechnol ; 38(12): 1373-1384, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32622558

RESUMEN

The secretome is defined as the set of molecules and biological factors that are secreted by cells into the extracellular space. In the past decade, secretome-based therapies have emerged as a promising approach to overcome the limitations associated with cell-based therapies for tissue and organ regeneration. Considering the growing number of recent publications related to secretome-based therapies, this review takes a step-by-step engineering approach to evaluate the role of the stem cell secretome in regenerative engineering. We discuss the functional benefits of the secretome, the techniques used to engineer the secretome and tailor its therapeutic effects, and the delivery systems and strategies that have been developed to use the secretome for tissue regeneration.


Asunto(s)
Medicina Regenerativa , Células Madre , Tratamiento Basado en Trasplante de Células y Tejidos , Medicina Regenerativa/métodos , Células Madre/metabolismo , Ingeniería de Tejidos , Cicatrización de Heridas
5.
Regen Eng Transl Med ; 5(2): 128-154, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31423461

RESUMEN

Reconstruction of large bone defects resulting from trauma, neoplasm, or infection is a challenging problem in reconstructive surgery. The need for bone grafting has been increasing steadily partly because of our enhanced capability to salvage limbs after major bone loss. Engineered bone graft substitutes can have advantages such as lack of antigenicity, high availability, and varying properties depending on the applications chosen for use. These favorable attributes have contributed to the rise of scaffold-based polymeric tissue regeneration. Critical components in the scaffold-based polymeric regenerative engineering approach often include 1. The existence of biodegradable polymeric porous structures with properties selected to promote tissue regeneration and while providing appropriate mechanical support during tissue regeneration. 2. Cellular populations that can influence and enhance regeneration. 3. The use of growth and morphogenetic factors which can influence cellular migration, differentiation and tissue regeneration in vivo. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and their ability to produce biocompatible degradation products. This paper presents an overview of polymeric scaffold-based bone tissue regeneration and reviews approaches as well as the particular roles of biodegradable polymers currently in use.

6.
ACS Appl Mater Interfaces ; 11(38): 34533-34559, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31437393

RESUMEN

A recent report from the United Nations has warned about the excessive CO2 emissions and the necessity of making efforts to keep the increase in global temperature below 2 °C. Current CO2 capture technologies are inadequate for reaching that goal, and effective mitigation strategies must be pursued. In this work, we summarize trends in materials development for CO2 adsorption with focus on recent studies. We put adsorbent materials into four main groups: (I) carbon-based materials, (II) silica/alumina/zeolites, (III) porous crystalline solids, and (IV) metal oxides. Trends in computational investigations along with experimental findings are covered to find promising candidates in light of practical challenges imposed by process economics.

7.
Inorg Chem ; 57(12): 6946-6956, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29808686

RESUMEN

The controlled synthesis of mixed crystallographic phase Mn2O3/Mn3O4 sponge material by varying heating rates and isothermal segments provides valuable information about the morphological and physical properties of the obtained sample. The well-characterized Mn2O3/Mn3O4 sponge and applicability of difference in reactivity of H2 and CO2 desorbed during the synthesis provide new developments in the synthesis of metal oxide materials with unique morphological and surface properties. We report the preparation of a Mn2O3/Mn3O4 sponge using a metal nitrate salt, water, and Dextran, a biopolymer consisting of glucose monomers. The Mn2O3/Mn3O4 sponge prepared at 1 °C·min-1 heating rate to 500 °C and held isothermally for 1 h consisted of large mesopores-macropores (25.5 nm, pore diameter) and a pore volume of 0.413 mL/g. Furthermore, the prepared Mn2O3/Mn3O4 and 5 mol %-Fe-Mn2O3/Mn3O4 sponges provide potential avenues in the development of solid-state catalyst materials for alcohol and amine oxidation reactions.

8.
Inorg Chem ; 57(4): 1815-1823, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29412657

RESUMEN

Electrocatalytic decomposition of urea for the production of hydrogen, H2, for clean energy applications, such as in fuel cells, has several potential advantages such as reducing carbon emissions in the energy sector and environmental applications to remove urea from animal and human waste facilities. The study and development of new catalyst materials containing nickel metal, the active site for urea decomposition, is a critical aspect of research in inorganic and materials chemistry. We report the synthesis and application of [NH4]NiPO4·6H2O and ß-Ni2P2O7 using in situ prepared [NH4]2HPO4. The [NH4]NiPO4·6H2O is calcined at varying temperatures and tested for electrocatalytic decomposition of urea. Our results indicate that [NH4]NiPO4·6H2O calcined at 300 °C with an amorphous crystal structure and, for the first time applied for urea electrocatalytic decomposition, had the greatest reported electroactive surface area (ESA) of 142 cm2/mg and an onset potential of 0.33 V (SCE) and was stable over a 24-h test period.

9.
Fungal Biol ; 122(2-3): 138-146, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29458717

RESUMEN

Herbarium specimens are a treasure trove for biochemical studies. However, this implies understanding of the chemical changes during the drying and storage of the specimen. We compared herbarium specimens at different ages and fresh samples of four mushroom species (Kuehneromyces mutabilis, Hypholoma capnoides, Kuehneromyces lignicola, Hypholoma fasciculare) of two genera in the family Strophariaceae by using proton nuclear magnetic resonance (1H NMR) spectroscopy combined with principal component analysis (PCA). 25 metabolites were identified. No significant alterations were found between herbarium samples at different ages, suggesting that they are stable enough for comparative studies. The most dominant differences between fresh and herbarium samples was that sugars such as α-α-trehalose, and fumaric and malic acids were more abundant in fresh fungi. Total contents of fatty and amino acids, uracil and γ-aminobutyric acid (GABA) were higher in herbarium specimens. In addition, pyroglutamic acid was observed only in Kuehneromyces mutabilis and fasciculic acid E in Hypholomafasciculare. Hence, based on results of the studied taxa, we conclude that NMR metabolomics can be used for both fresh and dried mushrooms when such alterations are properly addressed.


Asunto(s)
Agaricales/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Metabolómica , Agaricales/química , Aminoácidos/análisis , Ácidos Grasos/análisis , Compuestos Orgánicos/análisis , Análisis de Componente Principal , Azúcares/análisis
10.
ACS Appl Mater Interfaces ; 9(49): 42676-42687, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29161503

RESUMEN

We report on the new facile synthesis of mesoporous NiO/MnO2 in one step by modifying inverse micelle templated UCT (University of Connecticut) methods. The catalyst shows excellent electrocatalytic activity and stability for both the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline media after further coating with polyaniline (PANI). For electrochemical performance, the optimized catalyst exhibits a potential gap, ΔE, of 0.75 V to achieve a current of 10 mA cm-2 for the OER and -3 mA cm-2 for the ORR in 0.1 M KOH solution. Extensive characterization methods were applied to investigate the structure-property of the catalyst for correlations with activity (e.g., XRD, BET, SEM, HRTEM, FIB-TEM, XPS, TGA, and Raman). The high electrocatalytic activity of the catalyst closely relates to the good electrical conductivity of PANI, accessible mesoporous structure, high surface area, as well as the synergistic effect of the specific core-shell structure. This work opens a new avenue for the rational design of core-shell structure catalysts for energy conversion and storage applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA