Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 69(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38670145

RESUMEN

Objective.Treatment plan optimization in high dose rate brachytherapy often requires manual fine-tuning of penalty weights for each objective, which can be time-consuming and dependent on the planner's experience. To automate this process, this study used a multi-criteria approach called multi-objective Bayesian optimization with q-noisy expected hypervolume improvement as its acquisition function (MOBO-qNEHVI).Approach.The treatment plans of 13 prostate cancer patients were retrospectively imported to a research treatment planning system, RapidBrachyMTPS, where fast mixed integer optimization (FMIO) performs dwell time optimization given a set of penalty weights to deliver 15 Gy to the target volume. MOBO-qNEHVI was used to find patient-specific Pareto optimal penalty weight vectors that yield clinically acceptable dose volume histogram metrics. The relationship between the number of MOBO-qNEHVI iterations and the number of clinically acceptable plans per patient (acceptance rate) was investigated. The performance time was obtained for various parameter configurations.Main results.MOBO-qNEHVI found clinically acceptable treatment plans for all patients. With increasing the number of MOBO-qNEHVI iterations, the acceptance rate grew logarithmically while the performance time grew exponentially. Fixing the penalty weight of the tumour volume to maximum value, adding the target dose as a parameter, initiating MOBO-qNEHVI with 25 parallel sampling of FMIO, and running 6 MOBO-qNEHVI iterations found solutions that delivered 15 Gy to the hottest 95% of the clinical target volume while respecting the dose constraints to the organs at risk. The average acceptance rate for each patient was 89.74% ± 8.11%, and performance time was 66.6 ± 12.6 s. The initiation took 22.47 ± 7.57 s, and each iteration took 7.35 ± 2.45 s to find one Pareto solution.Significance.MOBO-qNEHVI combined with FMIO can automatically explore the trade-offs between treatment plan objectives in a patient specific manner within a minute. This approach can reduce the dependency of plan quality on planner's experience and reduce dose to the organs at risk.


Asunto(s)
Teorema de Bayes , Braquiterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Braquiterapia/métodos , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Masculino , Dosis de Radiación , Neoplasias de la Próstata/radioterapia
2.
Comput Mech ; 70(4): 803-818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36124205

RESUMEN

Crack initiation and propagation as well as abrupt occurrence of twinning are challenging fracture problems where the transient phase-field approach is proven to be useful. Early-stage twinning growth and interactions are in focus herein for a magnesium single crystal at the nanometer length-scale. We demonstrate a basic methodology in order to determine the mobility parameter that steers the kinetics of phase-field propagation. The concept is to use already existing molecular dynamics simulations and analytical solutions in order to set the mobility parameter correctly. In this way, we exercise the model for gaining new insights into growth of twin morphologies, temporally-evolving spatial distribution of the shear stress field in the vicinity of the nanotwin, multi-twin, and twin-defect interactions. Overall, this research addresses gaps in our fundamental understanding of twin growth, while providing motivation for future discoveries in twin evolution and their effect on next-generation material performance and design.

3.
Nanoscale ; 11(46): 22243-22247, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31742314

RESUMEN

The phase field approach (PFA) for the interaction of fracture and martensitic phase transformation (PT) is developed, which includes the change in surface energy during PT and the effect of unexplored scale parameters proportional to the ratio of the widths of the crack surface and the phase interface, both at the nanometer scale. The variation of these two parameters causes unexpected qualitative and quantitative effects: shift of PT away from the crack tip, "wetting" of the crack surface by martensite, change in the structure and geometry of the transformed region, crack trajectory, and process of interfacial damage evolution, as well as transformation toughening. The results suggest additional parameters controlling coupled fracture and PTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA