Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
bioRxiv ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36747789

RESUMEN

E3 ligases regulate key processes, but many of their roles remain unknown. Using Perturb-seq, we interrogated the function of 1,130 E3 ligases, partners and substrates in the inflammatory response in primary dendritic cells (DCs). Dozens impacted the balance of DC1, DC2, migratory DC and macrophage states and a gradient of DC maturation. Family members grouped into co-functional modules that were enriched for physical interactions and impacted specific programs through substrate transcription factors. E3s and their adaptors co-regulated the same processes, but partnered with different substrate recognition adaptors to impact distinct aspects of the DC life cycle. Genetic interactions were more prevalent within than between modules, and a deep learning model, comßVAE, predicts the outcome of new combinations by leveraging modularity. The E3 regulatory network was associated with heritable variation and aberrant gene expression in immune cells in human inflammatory diseases. Our study provides a general approach to dissect gene function.

2.
Nature ; 614(7948): 492-499, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755099

RESUMEN

Both common and rare genetic variants influence complex traits and common diseases. Genome-wide association studies have identified thousands of common-variant associations, and more recently, large-scale exome sequencing studies have identified rare-variant associations in hundreds of genes1-3. However, rare-variant genetic architecture is not well characterized, and the relationship between common-variant and rare-variant architecture is unclear4. Here we quantify the heritability explained by the gene-wise burden of rare coding variants across 22 common traits and diseases in 394,783 UK Biobank exomes5. Rare coding variants (allele frequency < 1 × 10-3) explain 1.3% (s.e. = 0.03%) of phenotypic variance on average-much less than common variants-and most burden heritability is explained by ultrarare loss-of-function variants (allele frequency < 1 × 10-5). Common and rare variants implicate the same cell types, with similar enrichments, and they have pleiotropic effects on the same pairs of traits, with similar genetic correlations. They partially colocalize at individual genes and loci, but not to the same extent: burden heritability is strongly concentrated in significant genes, while common-variant heritability is more polygenic, and burden heritability is also more strongly concentrated in constrained genes. Finally, we find that burden heritability for schizophrenia and bipolar disorder6,7 is approximately 2%. Our results indicate that rare coding variants will implicate a tractable number of large-effect genes, that common and rare associations are mechanistically convergent, and that rare coding variants will contribute only modestly to missing heritability and population risk stratification.


Asunto(s)
Exoma , Frecuencia de los Genes , Variación Genética , Herencia Multifactorial , Humanos , Exoma/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Herencia Multifactorial/genética , Factores de Riesgo , Reino Unido , Sitios Genéticos/genética , Esquizofrenia/genética , Trastorno Bipolar/genética
4.
Front Oncol ; 12: 929950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185212

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most treatment refractory and lethal malignancies. The diversity of endothelial cell (EC) lineages in the tumor microenvironment (TME) impacts the efficacy of antineoplastic therapies, which in turn remodel EC states and distributions. Here, we present a single-cell resolution framework of diverse EC lineages in the PDAC TME in the context of neoadjuvant chemotherapy, radiotherapy, and losartan. We analyzed a custom single-nucleus RNA-seq dataset derived from 37 primary PDAC specimens (18 untreated, 14 neoadjuvant FOLFIRINOX + chemoradiotherapy, 5 neoadjuvant FOLFIRINOX + chemoradiotherapy + losartan). A single-nucleus transcriptome analysis of 15,185 EC profiles revealed two state programs (ribosomal, cycling), four lineage programs (capillary, arterial, venous, lymphatic), and one program that did not overlap significantly with prior signatures but was enriched in pathways involved in vasculogenesis, stem-like state, response to wounding and hypoxia, and endothelial-to-mesenchymal transition (reactive EndMT). A bulk transcriptome analysis of two independent cohorts (n = 269 patients) revealed that the lymphatic and reactive EndMT lineage programs were significantly associated with poor clinical outcomes. While losartan and proton therapy were associated with reduced lymphatic ECs, these therapies also correlated with an increase in reactive EndMT. Thus, the development and inclusion of EndMT-inhibiting drugs (e.g., nintedanib) to a neoadjuvant chemoradiotherapy regimen featuring losartan and/or proton therapy may be most effective in depleting both lymphatic and reactive EndMT populations and potentially improving patient outcomes.

5.
Nat Genet ; 54(10): 1572-1580, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36050550

RESUMEN

Single-cell RNA sequencing (scRNA-seq) provides unique insights into the pathology and cellular origin of disease. We introduce single-cell disease relevance score (scDRS), an approach that links scRNA-seq with polygenic disease risk at single-cell resolution, independent of annotated cell types. scDRS identifies cells exhibiting excess expression across disease-associated genes implicated by genome-wide association studies (GWASs). We applied scDRS to 74 diseases/traits and 1.3 million single-cell gene-expression profiles across 31 tissues/organs. Cell-type-level results broadly recapitulated known cell-type-disease associations. Individual-cell-level results identified subpopulations of disease-associated cells not captured by existing cell-type labels, including T cell subpopulations associated with inflammatory bowel disease, partially characterized by their effector-like states; neuron subpopulations associated with schizophrenia, partially characterized by their spatial locations; and hepatocyte subpopulations associated with triglyceride levels, partially characterized by their higher ploidy levels. Genes whose expression was correlated with the scDRS score across cells (reflecting coexpression with GWAS disease-associated genes) were strongly enriched for gold-standard drug target and Mendelian disease genes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Célula Individual , Perfilación de la Expresión Génica/métodos , Herencia Multifactorial/genética , RNA-Seq , Análisis de la Célula Individual/métodos , Triglicéridos
6.
Nat Genet ; 54(10): 1466-1469, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138231

RESUMEN

Several biobanks, including UK Biobank (UKBB), are generating large-scale sequencing data. An existing method, SAIGE-GENE, performs well when testing variants with minor allele frequency (MAF) ≤ 1%, but inflation is observed in variance component set-based tests when restricting to variants with MAF ≤ 0.1% or 0.01%. Here, we propose SAIGE-GENE+ with greatly improved type I error control and computational efficiency to facilitate rare variant tests in large-scale data. We further show that incorporating multiple MAF cutoffs and functional annotations can improve power and thus uncover new gene-phenotype associations. In the analysis of UKBB whole exome sequencing data for 30 quantitative and 141 binary traits, SAIGE-GENE+ identified 551 gene-phenotype associations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Frecuencia de los Genes/genética , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Secuenciación del Exoma
7.
Nat Genet ; 54(10): 1479-1492, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36175791

RESUMEN

Genome-wide association studies provide a powerful means of identifying loci and genes contributing to disease, but in many cases, the related cell types/states through which genes confer disease risk remain unknown. Deciphering such relationships is important for identifying pathogenic processes and developing therapeutics. In the present study, we introduce sc-linker, a framework for integrating single-cell RNA-sequencing, epigenomic SNP-to-gene maps and genome-wide association study summary statistics to infer the underlying cell types and processes by which genetic variants influence disease. The inferred disease enrichments recapitulated known biology and highlighted notable cell-disease relationships, including γ-aminobutyric acid-ergic neurons in major depressive disorder, a disease-dependent M-cell program in ulcerative colitis and a disease-specific complement cascade process in multiple sclerosis. In autoimmune disease, both healthy and disease-dependent immune cell-type programs were associated, whereas only disease-dependent epithelial cell programs were prominent, suggesting a role in disease response rather than initiation. Our framework provides a powerful approach for identifying the cell types and cellular processes by which genetic variants influence disease.


Asunto(s)
Trastorno Depresivo Mayor , Estudio de Asociación del Genoma Completo , Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad , Genética Humana , Humanos , Polimorfismo de Nucleótido Simple/genética , ARN , Ácido gamma-Aminobutírico
8.
Nat Genet ; 54(8): 1178-1191, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35902743

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and treatment-refractory cancer. Molecular stratification in pancreatic cancer remains rudimentary and does not yet inform clinical management or therapeutic development. Here, we construct a high-resolution molecular landscape of the cellular subtypes and spatial communities that compose PDAC using single-nucleus RNA sequencing and whole-transcriptome digital spatial profiling (DSP) of 43 primary PDAC tumor specimens that either received neoadjuvant therapy or were treatment naive. We uncovered recurrent expression programs across malignant cells and fibroblasts, including a newly identified neural-like progenitor malignant cell program that was enriched after chemotherapy and radiotherapy and associated with poor prognosis in independent cohorts. Integrating spatial and cellular profiles revealed three multicellular communities with distinct contributions from malignant, fibroblast and immune subtypes: classical, squamoid-basaloid and treatment enriched. Our refined molecular and cellular taxonomy can provide a framework for stratification in clinical trials and serve as a roadmap for therapeutic targeting of specific cellular phenotypes and multicellular interactions.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Perfilación de la Expresión Génica , Humanos , Terapia Neoadyuvante , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Pronóstico , Transcriptoma/genética , Neoplasias Pancreáticas
9.
Nat Genet ; 54(6): 827-836, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668300

RESUMEN

Disease-associated single-nucleotide polymorphisms (SNPs) generally do not implicate target genes, as most disease SNPs are regulatory. Many SNP-to-gene (S2G) linking strategies have been developed to link regulatory SNPs to the genes that they regulate in cis. Here, we developed a heritability-based framework for evaluating and combining different S2G strategies to optimize their informativeness for common disease risk. Our optimal combined S2G strategy (cS2G) included seven constituent S2G strategies and achieved a precision of 0.75 and a recall of 0.33, more than doubling the recall of any individual strategy. We applied cS2G to fine-mapping results for 49 UK Biobank diseases/traits to predict 5,095 causal SNP-gene-disease triplets (with S2G-derived functional interpretation) with high confidence. We further applied cS2G to provide an empirical assessment of disease omnigenicity; we determined that the top 1% of genes explained roughly half of the SNP heritability linked to all genes and that gene-level architectures vary with variant allele frequency.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Polimorfismo de Nucleótido Simple/genética
10.
bioRxiv ; 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34845454

RESUMEN

Genome-wide association studies (GWAS) provide a powerful means to identify loci and genes contributing to disease, but in many cases the related cell types/states through which genes confer disease risk remain unknown. Deciphering such relationships is important for identifying pathogenic processes and developing therapeutics. Here, we introduce sc-linker, a framework for integrating single-cell RNA-seq (scRNA-seq), epigenomic maps and GWAS summary statistics to infer the underlying cell types and processes by which genetic variants influence disease. We analyzed 1.6 million scRNA-seq profiles from 209 individuals spanning 11 tissue types and 6 disease conditions, and constructed gene programs capturing cell types, disease progression, and cellular processes both within and across cell types. We evaluated these gene programs for disease enrichment by transforming them to SNP annotations with tissue-specific epigenomic maps and computing enrichment scores across 60 diseases and complex traits (average N= 297K). Cell type, disease progression, and cellular process programs captured distinct heritability signals even within the same cell type, as we show in multiple complex diseases that affect the brain (Alzheimer’s disease, multiple sclerosis), colon (ulcerative colitis) and lung (asthma, idiopathic pulmonary fibrosis, severe COVID-19). The inferred disease enrichments recapitulated known biology and highlighted novel cell-disease relationships, including GABAergic neurons in major depressive disorder (MDD), a disease progression M cell program in ulcerative colitis, and a disease-specific complement cascade process in multiple sclerosis. In autoimmune disease, both healthy and disease progression immune cell type programs were associated, whereas for epithelial cells, disease progression programs were most prominent, perhaps suggesting a role in disease progression over initiation. Our framework provides a powerful approach for identifying the cell types and cellular processes by which genetic variants influence disease.

11.
Nature ; 595(7865): 107-113, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33915569

RESUMEN

COVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.


Asunto(s)
COVID-19/patología , COVID-19/virología , Riñón/patología , Hígado/patología , Pulmón/patología , Miocardio/patología , SARS-CoV-2/patogenicidad , Adulto , Anciano , Anciano de 80 o más Años , Atlas como Asunto , Autopsia , Bancos de Muestras Biológicas , COVID-19/genética , COVID-19/inmunología , Células Endoteliales , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Fibroblastos , Estudio de Asociación del Genoma Completo , Corazón/virología , Humanos , Inflamación/patología , Inflamación/virología , Riñón/virología , Hígado/virología , Pulmón/virología , Masculino , Persona de Mediana Edad , Especificidad de Órganos , Fagocitos , Alveolos Pulmonares/patología , Alveolos Pulmonares/virología , ARN Viral/análisis , Regeneración , SARS-CoV-2/inmunología , Análisis de la Célula Individual , Carga Viral
12.
Nat Med ; 27(3): 546-559, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33654293

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.


Asunto(s)
COVID-19/epidemiología , COVID-19/genética , Interacciones Huésped-Patógeno/genética , SARS-CoV-2/fisiología , Análisis de Secuencia de ARN/estadística & datos numéricos , Análisis de la Célula Individual/estadística & datos numéricos , Internalización del Virus , Adulto , Anciano , Anciano de 80 o más Años , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , COVID-19/virología , Catepsina L/genética , Catepsina L/metabolismo , Conjuntos de Datos como Asunto/estadística & datos numéricos , Demografía , Femenino , Perfilación de la Expresión Génica/estadística & datos numéricos , Humanos , Pulmón/metabolismo , Pulmón/virología , Masculino , Persona de Mediana Edad , Especificidad de Órganos/genética , Sistema Respiratorio/metabolismo , Sistema Respiratorio/virología , Análisis de Secuencia de ARN/métodos , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Análisis de la Célula Individual/métodos
13.
bioRxiv ; 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33655247

RESUMEN

The SARS-CoV-2 pandemic has caused over 1 million deaths globally, mostly due to acute lung injury and acute respiratory distress syndrome, or direct complications resulting in multiple-organ failures. Little is known about the host tissue immune and cellular responses associated with COVID-19 infection, symptoms, and lethality. To address this, we collected tissues from 11 organs during the clinical autopsy of 17 individuals who succumbed to COVID-19, resulting in a tissue bank of approximately 420 specimens. We generated comprehensive cellular maps capturing COVID-19 biology related to patients' demise through single-cell and single-nucleus RNA-Seq of lung, kidney, liver and heart tissues, and further contextualized our findings through spatial RNA profiling of distinct lung regions. We developed a computational framework that incorporates removal of ambient RNA and automated cell type annotation to facilitate comparison with other healthy and diseased tissue atlases. In the lung, we uncovered significantly altered transcriptional programs within the epithelial, immune, and stromal compartments and cell intrinsic changes in multiple cell types relative to lung tissue from healthy controls. We observed evidence of: alveolar type 2 (AT2) differentiation replacing depleted alveolar type 1 (AT1) lung epithelial cells, as previously seen in fibrosis; a concomitant increase in myofibroblasts reflective of defective tissue repair; and, putative TP63+ intrapulmonary basal-like progenitor (IPBLP) cells, similar to cells identified in H1N1 influenza, that may serve as an emergency cellular reserve for severely damaged alveoli. Together, these findings suggest the activation and failure of multiple avenues for regeneration of the epithelium in these terminal lungs. SARS-CoV-2 RNA reads were enriched in lung mononuclear phagocytic cells and endothelial cells, and these cells expressed distinct host response transcriptional programs. We corroborated the compositional and transcriptional changes in lung tissue through spatial analysis of RNA profiles in situ and distinguished unique tissue host responses between regions with and without viral RNA, and in COVID-19 donor tissues relative to healthy lung. Finally, we analyzed genetic regions implicated in COVID-19 GWAS with transcriptomic data to implicate specific cell types and genes associated with disease severity. Overall, our COVID-19 cell atlas is a foundational dataset to better understand the biological impact of SARS-CoV-2 infection across the human body and empowers the identification of new therapeutic interventions and prevention strategies.

14.
Nat Comput Sci ; 1(4): 272-279, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38217177

RESUMEN

DNA profiling has become an essential tool for crime solving and prevention, and CODIS (Combined DNA Index System) criminal investigation databases have flourished at the national, state and even local level. However, reports suggest that the DNA profiles of all suspects searched in these databases are often retained, which could result in racial profiling. Here, we devise an approach to both enable broad DNA profile searches and preserve exonerated citizens' privacy through a real-time privacy-preserving procedure to query CODIS databases. Using our approach, an agent can privately and efficiently query a suspect's DNA profile device in the field, learning only whether the profile matches against any database profile. More importantly, the central database learns nothing about the queried profile, and thus cannot retain it. Our approach paves the way to implement privacy-preserving DNA profile searching in CODIS databases and any CODIS-like system.

15.
Sci Transl Med ; 12(544)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32434849

RESUMEN

The diagnosis of Mendelian disorders requires labor-intensive literature research. Trained clinicians can spend hours looking for the right publication(s) supporting a single gene that best explains a patient's disease. AMELIE (Automatic Mendelian Literature Evaluation) greatly accelerates this process. AMELIE parses all 29 million PubMed abstracts and downloads and further parses hundreds of thousands of full-text articles in search of information supporting the causality and associated phenotypes of most published genetic variants. AMELIE then prioritizes patient candidate variants for their likelihood of explaining any patient's given set of phenotypes. Diagnosis of singleton patients (without relatives' exomes) is the most time-consuming scenario, and AMELIE ranked the causative gene at the very top for 66% of 215 diagnosed singleton Mendelian patients from the Deciphering Developmental Disorders project. Evaluating only the top 11 AMELIE-scored genes of 127 (median) candidate genes per patient resulted in a rapid diagnosis in more than 90% of cases. AMELIE-based evaluation of all cases was 3 to 19 times more efficient than hand-curated database-based approaches. We replicated these results on a retrospective cohort of clinical cases from Stanford Children's Health and the Manton Center for Orphan Disease Research. An analysis web portal with our most recent update, programmatic interface, and code is available at AMELIE.stanford.edu.


Asunto(s)
Exoma , Niño , Genotipo , Humanos , Fenotipo , Probabilidad , Estudios Retrospectivos
16.
Genet Med ; 22(2): 362-370, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31467448

RESUMEN

PURPOSE: Both monogenic pathogenic variant cataloging and clinical patient diagnosis start with variant-level evidence retrieval followed by expert evidence integration in search of diagnostic variants and genes. Here, we try to accelerate pathogenic variant evidence retrieval by an automatic approach. METHODS: Automatic VAriant evidence DAtabase (AVADA) is a novel machine learning tool that uses natural language processing to automatically identify pathogenic genetic variant evidence in full-text primary literature about monogenic disease and convert it to genomic coordinates. RESULTS: AVADA automatically retrieved almost 60% of likely disease-causing variants deposited in the Human Gene Mutation Database (HGMD), a 4.4-fold improvement over the current best open source automated variant extractor. AVADA contains over 60,000 likely disease-causing variants that are in HGMD but not in ClinVar. AVADA also highlights the challenges of automated variant mapping and pathogenicity curation. However, when combined with manual validation, on 245 diagnosed patients, AVADA provides valuable evidence for an additional 18 diagnostic variants, on top of ClinVar's 21, versus only 2 using the best current automated approach. CONCLUSION: AVADA advances automated retrieval of pathogenic monogenic variant evidence from full-text literature. Far from perfect, but much faster than PubMed/Google Scholar search, careful curation of AVADA-retrieved evidence can aid both database curation and patient diagnosis.


Asunto(s)
Procesamiento Automatizado de Datos/métodos , Genómica/métodos , Almacenamiento y Recuperación de la Información/métodos , Manejo de Datos/métodos , Bases de Datos Factuales , Bases de Datos Genéticas , Humanos , Procesamiento de Lenguaje Natural , PubMed , Publicaciones
18.
iScience ; 15: 524-535, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31132746

RESUMEN

Human neural stem cells (NSCs) offer therapeutic potential for neurodegenerative diseases, such as inherited monogenic nervous system disorders, and neural injuries. Gene editing in NSCs (GE-NSCs) could enhance their therapeutic potential. We show that NSCs are amenable to gene targeting at multiple loci using Cas9 mRNA with synthetic chemically modified guide RNAs along with DNA donor templates. Transplantation of GE-NSC into oligodendrocyte mutant shiverer-immunodeficient mice showed that GE-NSCs migrate and differentiate into astrocytes, neurons, and myelin-producing oligodendrocytes, highlighting the fact that GE-NSCs retain their NSC characteristics of self-renewal and site-specific global migration and differentiation. To show the therapeutic potential of GE-NSCs, we generated GALC lysosomal enzyme overexpressing GE-NSCs that are able to cross-correct GALC enzyme activity through the mannose-6-phosphate receptor pathway. These GE-NSCs have the potential to be an investigational cell and gene therapy for a range of neurodegenerative disorders and injuries of the central nervous system, including lysosomal storage disorders.

19.
Nat Genet ; 51(4): 755-763, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30804562

RESUMEN

Exome analysis of patients with a likely monogenic disease does not identify a causal variant in over half of cases. Splice-disrupting mutations make up the second largest class of known disease-causing mutations. Each individual (singleton) exome harbors over 500 rare variants of unknown significance (VUS) in the splicing region. The existing relevant pathogenicity prediction tools tackle all non-coding variants as one amorphic class and/or are not calibrated for the high sensitivity required for clinical use. Here we calibrate seven such tools and devise a novel tool called Splicing Clinically Applicable Pathogenicity prediction (S-CAP) that is over twice as powerful as all previous tools, removing 41% of patient VUS at 95% sensitivity. We show that S-CAP does this by using its own features and not via meta-prediction over previous tools, and that splicing pathogenicity prediction is distinct from predicting molecular splicing changes. S-CAP is an important step on the path to deriving non-coding causal diagnoses.


Asunto(s)
Variación Genética/genética , Empalme del ARN/genética , Exoma/genética , Humanos , Mutación/genética
20.
Genet Med ; 21(2): 464-470, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29997393

RESUMEN

PURPOSE: Exome sequencing and diagnosis is beginning to spread across the medical establishment. The most time-consuming part of genome-based diagnosis is the manual step of matching the potentially long list of patient candidate genes to patient phenotypes to identify the causative disease. METHODS: We introduce Phrank (for phenotype ranking), an information theory-inspired method that utilizes a Bayesian network to prioritize candidate diseases or genes, as a stand-alone module that can be run with any underlying knowledgebase and any variant filtering scheme. RESULTS: Phrank outperforms existing methods at ranking the causative disease or gene when applied to 169 real patient exomes with Mendelian diagnoses. Phrank's greatest improvement is in disease space, where across all 169 patients it ranks only 3 diseases on average ahead of the true diagnosis, whereas Phenomizer ranks 32 diseases ahead of the causal one. CONCLUSIONS: Using Phrank to rank all patient candidate genes or diseases, as they start working through a new case, will save the busy clinician much time in deriving a genetic diagnosis.


Asunto(s)
Diagnóstico por Computador , Enfermedades Genéticas Congénitas/diagnóstico , Pruebas Genéticas , Fenotipo , Programas Informáticos , Benchmarking , Biología Computacional/métodos , Exoma , Humanos , Bases del Conocimiento , Patología Molecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...