Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-22, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084768

RESUMEN

One of the major categories of industrial enzymes, proteases is crucial to the survival of living things. The purpose of this research was to newly thermostable protease from the thermophilum Geobacillus stearothermophilus. With the conserved catalytic tetrad, protease (Protease JJ) is closely related to the serine proteases from the subtilisin S8 peptidase, according to phylogenetic tree analysis. The tertiary structure of Protease JJ was predicted structurally using RoseTTAFold, and it is a sandwich structure overall. Homology modeling validation showed Protease JJ was modeled in X-ray's protein areas, and it has gained a favored Ramachandran graph regarding Phi/Psi angels. Protease JJ showed structure stability through Molecular dynamics simulation in the presence of Tween20 and Methanol in 1% concentration. Also, Protease JJ exhibited thermal stability at 60 to 90 °C so that amino acid exposure of Protease JJ was low and constant throughout the MD simulation. Docking results of Protease JJ with BSA and ßcasein were simulated via MD and it was found that Protease JJ could interact with both BSA and ßcasein strongly. MM/PBSA analysis showed Protease JJ may be involved via more amino acids with BSA as well as established more interaction hydrogen bonds. Overall, evidence suggests Protease JJ probably has merit for future experimental investigation as a thermostable protease.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 41(24): 15354-15385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36927377

RESUMEN

The two types of bladder cancer, muscle invasive and non-muscle invasive (NMIBC), are among the most prevalent cancers worldwide. Despite this, even though muscle-invasive bladder cancer is more deadly, NMIBC requires more therapy due to a greater recurrence rate and more extended and expensive care. Immunotherapy, intravesical chemotherapy, cystoscopy, and transurethral resection (TUR) are among the treatments available. Crude scorpion venomand purified proteins and peptides, can suppress cancer metastasis in an in vitro or in vivo context, suppress cancer growth, halt the cell cycle, and cause cell apoptosis, according to an increasing number of experimental and preclinical studies. In this research, three novels discovered peptides (P2, P3 and P4. ProteomeXchange: PXD036231) from Buthotus saulcyi and, Odontobuthus doriae scorpions were used along with a peptide called pantinin (as a control). The phylogenetic tree showed that the peptides belong to Chaperonin HSP60, Chrysophsin2 and Pheromone-binding protein2, respectively. These peptides were docked with four known antigens, BAGE, BLCAP, PRAME and ROR1 related to bladder cancer and three bacterial antigens FliC, FliD and FimH to investigate their antimicrobial and anticancer properties. The results showed that peptides 2 and 3 have the best binding rate. The MD simulation results also confirmed the binding of peptides 2 and 3 to antigens. The penetration power of peptides 2 and 3 in the membrane of cancer cells and bacterial cells was also simulated, and the results of RMSD and PD confirmed it. QSAR suggests that peptides 2 and 3 can act as anti-cancer and anti-microbial peptides.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias Vesicales sin Invasión Muscular , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Escorpiones , Simulación del Acoplamiento Molecular , Péptidos Antimicrobianos , Simulación de Dinámica Molecular , Filogenia , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/cirugía , Antígenos de Neoplasias
3.
Int J Pept Res Ther ; 28(2): 71, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35228842

RESUMEN

Bladder cancer is well-known cancer in two forms of muscle-invasive and non-muscle-invasive bladder cancer which is responsible for annual deaths worldwide. Common therapies methods are somewhat successful; however, these methods have the limitations such as the side effects of chemotherapy which necessitate the requirement for new preventive methods against bladder cancer. Hence, we explain a novel designed multi-epitope vaccine against bladder cancer using the immunoinformatics tool. Three well-known BLCAP, PRAM, and BAGE4 antigens were evaluated due to most repetitive CTL and HTL epitopes binding. IFNγ and IL10 inducer potential of selected epitopes were investigated, as well as liner and conformational B-cell epitopes. Human beta-defensin 3 and PADRE sequence were added to construct as adjuvants, along with EAAAK, AAY, and GGGS linkers to fuse CTL and HTL epitopes. Results showed this construct encodes a soluble, non-toxic, and non-allergic protein with 70 kDa molecular weight. Modeled 3D structure of vaccine was docked whit Toll-Like Receptors (TLR) of 7/8. Docking, molecular dynamics simulation and MMBPSA analysis confirmed stability of vaccine-TLR complexes. The immunogenicity showed this construct could elicit humoral and cellular immune responses. In silico and immunoinformatics evaluations suggest that this construct is a recombinant candidate vaccine against bladder cancer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10989-022-10380-7.

4.
Sci Rep ; 11(1): 24485, 2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34966175

RESUMEN

A new strain of Influenza A Virus (IAV), so-called "H7N9 Avian Influenza", is the first strain of this virus in which a human is infected by transmitting the N9 of influenza virus. Although continuous human-to-human transmission has not been reported, the occurrence of various H7N9-associated epidemics and the lack of production of strong antibodies against H7N9 in humans warn of the potential for H7N9 to become a new pandemic. Therefore, the need for effective vaccination against H7N9 as a life-threatening viral pathogen has become a major concern. The current study reports the design of a multi-epitope vaccine against Hemagglutinin (HA) and Neuraminidase (NA) proteins of H7N9 Influenza A virus by prediction of Cytotoxic T lymphocyte (CTL), Helper T lymphocyte (HTL), IFN-γ and B-cell epitopes. Human ß-defensin-3 (HßD-3) and pan HLA DR-binding epitope (PADRE) sequence were considered as adjuvant. EAAAK, AAY, GPGPG, HEYGAEALERAG, KK and RVRR linkers were used as a connector for epitopes. The final construct contained 777 amino acids that are expected to be a recombinant protein of about ~ 86.38 kDa with antigenic and non-allergenic properties after expression. Modeled protein analysis based on the tertiary structure validation, docking studies, and molecular dynamics simulations results like Root-mean-square deviation (RMSD), Gyration, Root-mean-square fluctuation (RMSF) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) showed that this protein has a stable construct and capable of being in interaction with Toll-like receptor 7 (TLR7), TLR8 and m826 antibody. Analysis of the obtained data the demonstrates that suggested vaccine has the potential to induce the immune response by stimulating T and Bcells, and may be utilizable for prevention purposes against Avian Influenza A (H7N9).


Asunto(s)
Epítopos/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Animales , Aves , Biología Computacional , Simulación por Computador , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunidad , Gripe Aviar/inmunología , Modelos Inmunológicos , Modelos Moleculares , Neuraminidasa/inmunología , Proteínas Virales/inmunología
5.
Immunogenetics ; 73(6): 459-477, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34542663

RESUMEN

Since 2019, the world was involved with SARS-CoV-2 and consequently, with the announcement by the World Health Organization that COVID-19 was a pandemic, scientific were an effort to obtain the best approach to combat this global dilemma. The best way to prevent the pandemic from spreading further is to use a vaccine against COVID-19. Here, we report the design of a recombinant multi-epitope vaccine against the four proteins spike or crown (S), membrane (M), nucleocapsid (N), and envelope (E) of SARS-CoV-2 using immunoinformatics tools. We evaluated the most antigenic epitopes that bind to HLA class 1 subtypes, along with HLA class 2, as well as B cell epitopes. Beta-defensin 3 and PADRE sequence were used as adjuvants in the structure of the vaccine. KK, GPGPG, and AAY linkers were used to fuse the selected epitopes. The nucleotide sequence was cloned into pET26b(+) vector using restriction enzymes XhoI and NdeI, and HisTag sequence was considered in the C-terminal of the construct. The results showed that the proposed candidate vaccine is a 70.87 kDa protein with high antigenicity and immunogenicity as well as non-allergenic and non-toxic. A total of 95% of the selected epitopes have conservancy with similar sequences. Molecular docking showed a strong binding between the vaccine structure and tool-like receptor (TLR) 7/8. The docking, molecular dynamics, and MM/PBSA analysis showed that the vaccine established a stable interaction with both structures of TLR7 and TLR8. Simulation of immune stimulation by this vaccine showed that it evokes immune responses related to humoral and cellular immunity.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , SARS-CoV-2/inmunología , Secuencia de Aminoácidos , Secuencia de Bases , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/metabolismo , Biología Computacional , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Antígenos HLA/inmunología , Humanos , Inmunogenicidad Vacunal , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Peso Molecular , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Receptor Toll-Like 7/química , Receptor Toll-Like 8/química , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/metabolismo , Vacunología , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología
6.
PLoS One ; 15(6): e0234958, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32574185

RESUMEN

Proteases play an essential role in living organisms and represent one of the largest groups of industrial enzymes. The aim of this work was recombinant production and characterization of a newly identified thermostable protease 1147 from thermophilum indigenous Cohnella sp. A01. Phylogenetic tree analysis showed that protease 1147 is closely related to the cysteine proteases from DJ-1/ThiJ/PfpI superfamily, with the conserved catalytic tetrad. Structural prediction using MODELLER 9v7 indicated that protease 1147 has an overall α/ß sandwich tertiary structure. The gene of protease 1147 was cloned and expressed in Escherichia coli (E. coli) BL21. The recombinant protease 1147 appeared as a homogenous band of 18 kDa in SDS-PAGE, which was verified by western blot and zymography. The recombinant protein was purified with a yield of approximately 88% in a single step using Ni-NTA affinity chromatography. Furthermore, a rapid one-step thermal shock procedure was successfully implemented to purify the protein with a yield of 73%. Using casein as the substrate, Km, and kcat, kcat/Km values of 13.72 mM, 3.143 × 10-3 (s-1), and 0.381 (M-1 S-1) were obtained, respectively. The maximum protease activity was detected at pH = 7 and 60°C with the inactivation rate constant (kin) of 2.10 × 10-3 (m-1), and half-life (t1/2) of 330.07 min. Protease 1147 exhibited excellent stability to organic solvent, metal ions, and 1% SDS. The protease activity was significantly enhanced by Tween 20 and Tween 80 and suppressed by cysteine protease specific inhibitors. Docking results and molecular dynamics (MD) simulation revealed that Tween 20 interacted with protease 1147 via hydrogen bonds and made the structure more stable. CD and fluorescence spectra indicated structural changes taking place at 100°C, very basic and acidic pH, and in the presence of Tween 20. These properties make this newly characterized protease a potential candidate for various biotechnological applications.


Asunto(s)
Bacillales/enzimología , Proteínas Bacterianas/química , Péptido Hidrolasas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Clonación Molecular , Pruebas de Enzimas , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Peso Molecular , Péptido Hidrolasas/aislamiento & purificación , Péptido Hidrolasas/ultraestructura , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/ultraestructura , Especificidad por Sustrato
7.
3 Biotech ; 9(7): 255, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31192080

RESUMEN

Differential expression of transgenes in transgenic animals is one of the main drawbacks of pronuclear injection. To overwhelm this issue, the genetic constructs are equipped with insulators. In this study, the consensus of exerting chicken hypersensitive site-4 (cHS4) insulator was examined on the shield of phosphoglycerate kinase-1 (Pgk-1) promoter from the surrounding chromatin in transgenic mice. The PGK-EGFP cassette was flanked by insertion of three copies of the cHS4 insulators. Mouse zygotes' microinjection by the constructed cassette was resulted in the birth of nine transgenic founders (F0). Copy-number-dependent expression of the EGFP was investigated in the transgenic F1 offspring by fluorometry and real-time PCR. They showed no correlation between the expression level of transgene and gene copy number among the transgenic lines. Moreover, dissection of the EGFP-expressing mice revealed heterogeneous expression of the EGFP in the different organs. In conclusion, for the first time, these findings indicated that the cHS4 sequence is not a perfect insulator to fully protect the Pgk-1 promoter from the side effects of integration site in transgenic mice and it needs probably to some additional elements of the cHS4 locus to reach this goal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...