Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Prog ; 107(3): 368504241265003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39118318

RESUMEN

The world has moved toward renewable energy resources for three major reasons: (1) to mitigate climate change arising from the excessive emission of greenhouse gases, (2) to protect health by lowering greenhouse gas emissions, and (3) to meet ever-increasing demands for energy. Shiraz is a major city in Iran and struggles with pollution challenges due to the presence of highly polluting industries. The increased energy demand and the lack of a demand-supply trade-off have led to frequent power outages in Shiraz in recent years. Batteries have been of great interest to researchers as they have a wide range of compounds and variety in the market and strongly influence the function and initial costs of hybrid energy systems. This study models a hybrid renewable energy system using four different batteries, that is, lead-acid, Li-ion, vanadium redox, and zinc-bromine batteries. These four scenarios were subjected to techno-economic analysis in HOMER. The system was assumed to generate 3000 kW of industrial power and 300 kWh of office/domestic power. It was demonstrated that the hybrid system with the lead-acid battery was the most optimal system to supply power to the case-study industrial plant for both industrial and domestic load, with a levelized cost of energy of 0.47 USD/kWh and an initial cost of 6.02 million USD. However, the hybrid system with the Li-ion battery will become more optimal than the system with the lead-acid battery if Li-ion batteries continue to become more affordable in < 5 years. This system would decrease CO2 emissions by 1,060,133 kg every year as compared to the diesel system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA