Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(26): 6119-6126, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37364235

RESUMEN

The structural factors affecting triplet-triplet annihilation (TTA) at the molecular level are not well-understood. Here, our steady-state photoluminescence and transient absorption results demonstrate that the spin statistical factor, η, decreases from 0.60 to 0.46 and 0.14 going from 9,10-diphenylanthracene (DPA) to the 1,5-DPA and 2,6-DPA isomers, respectively, during photon upconversion with a platinum octaethylporphyrin sensitizer. Density functional theory (DFT) shows that η depends on the energetics of hot triplet states and molecular rigidity. The significantly high conical intersection energy between the S0 and T1 states for 9,10-DPA gives its longer triplet lifetime. Time-dependent DFT calculations show that 9,10-DPA and 1,5-DPA can undergo high-level reverse intersystem crossing from their T2 and T3 states, respectively, to the bright S1 state, increasing the limit of the spin statistical factor. Both factors ultimately serve to enhance the TTA efficiency. This work provides insight into designing molecules for efficient light-emitting and photon upconversion applications.

2.
J Phys Chem Lett ; 13(13): 3002-3007, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35347991

RESUMEN

During photon upconversion, quantum dots (QDs) transfer energy to molecules in solution through a long ligand shell. This insulating ligand shell imparts colloidal stability at the expense of efficient photosensitization. For the first time, we quantify the barrier these aliphatic ligands pose for triplet energy transfer in solution. Using transient absorption spectroscopy, we experimentally measure a small damping coefficient of 0.027 Å-1 for a ligand exceeding 10 carbons in length. The dynamic nature of ligands in solution lowers the barrier to charge or energy transfer compared to organic thin films. In addition, we show that surface ligands shorter than 8 carbons in length allow direct energy transfer from the QD, bypassing the need for a transmitter ligand to mediate energy transfer, leading to a 6.9% upconversion quantum yield compared with 0.01% for ligands with 18 carbons. This experimentally derived insight will enable the design of efficient QD-based photosensitizers for catalysis and energy conversion.

3.
J Chem Phys ; 153(11): 114702, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32962360

RESUMEN

In triplet-triplet annihilation based photon upconversion, controlling triplet energy transfer (TET) through the system is key to unlocking higher efficiencies. In this work, we vary the size of colloidally synthesized CdSe nanocrystals (NCs) to examine the effects on TET during photon upconversion, using steady-state measurements and transient absorption spectroscopy. As the CdSe NC size increases, the photon upconversion quantum yield (QY) decreases due to the decrease in the rate of TET from CdSe to the surface bound anthracene transmitter ligand, as expected for the Marcus description of energy transfer from the transmitter to the NC. Long microsecond transmitter lifetimes are critical to high photon upconversion QYs.

4.
J Am Chem Soc ; 141(25): 9769-9772, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31180212

RESUMEN

Photon upconversion employing semiconductor nanocrystals (NCs) makes use of their large and tunable absorption to harvest light in the near-infrared (NIR) wavelengths as well as their small gap between singlet and triplet excited states to reduce energy losses. Here, we report the highest QY (11.8%) thus far for the conversion of NIR to yellow photons by improving the quality of the PbS NC. This high QY was achieved by using highly purified lead and thiourea precursors. This QY is 2.6 times higher than from NCs prepared with commercially available lead and sulfide precursors. Transient absorption spectroscopy reveals two reasons for the enhanced QY: longer intrinsic exciton lifetimes of PbS NCs and the ability to support a longer triplet lifetime for the surface-bound transmitter molecule. Overall, this results in a higher efficiency of triplet exciton transfer from the PbS NC light absorber to the emitter and thus a higher photon upconversion QY.


Asunto(s)
Plomo/química , Fármacos Fotosensibilizantes/química , Puntos Cuánticos/química , Sulfuros/química , Rayos Infrarrojos , Plomo/efectos de la radiación , Fármacos Fotosensibilizantes/efectos de la radiación , Puntos Cuánticos/efectos de la radiación , Sulfuros/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA