Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 120(6): 630-643, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38230606

RESUMEN

AIMS: Human pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) provide a platform to identify and characterize factors that regulate the maturation of CMs. The transition from an immature foetal to an adult CM state entails coordinated regulation of the expression of genes involved in myofibril formation and oxidative phosphorylation (OXPHOS) among others. Lysine demethylase 5 (KDM5) specifically demethylates H3K4me1/2/3 and has emerged as potential regulators of expression of genes involved in cardiac development and mitochondrial function. The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. METHODS AND RESULTS: KDM5A, B, and C proteins were mainly expressed in the early post-natal stages, and their expressions were progressively downregulated in the post-natal CMs and were absent in adult hearts and CMs. In contrast, KDM5 proteins were persistently expressed in the iPSC-CMs up to 60 days after the induction of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor, induced differential expression of 2372 genes, including upregulation of genes involved in fatty acid oxidation (FAO), OXPHOS, and myogenesis in the iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the cleavage under targets and release using nuclease assay showed enriched of the H3K4me3 peaks at the promoter regions of genes encoding FAO, OXPHOS, and sarcomere proteins. Consistent with the chromatin and gene expression data, KDM5 inhibition increased the expression of multiple sarcomere proteins and enhanced myofibrillar organization. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene and increased its RNA and protein levels. Knockdown of ESRRA in KDM5-C70-treated iPSC-CM suppressed expression of a subset of the KDM5 targets. In conjunction with changes in gene expression, KDM5 inhibition increased oxygen consumption rate and contractility in iPSC-CMs. CONCLUSION: KDM5 inhibition enhances maturation of iPSC-CMs by epigenetically upregulating the expressions of OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.


Asunto(s)
Diferenciación Celular , Ácidos Grasos , Miocitos Cardíacos , Miofibrillas , Fosforilación Oxidativa , Proteína 2 de Unión a Retinoblastoma , Humanos , Células Cultivadas , Ácidos Grasos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Histonas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/enzimología , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/genética , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Miofibrillas/enzimología , Oxidación-Reducción , Regiones Promotoras Genéticas , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética
2.
Dev Cell ; 58(17): 1562-1577.e8, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625403

RESUMEN

Oncogenic KRASG12D (KRAS∗) is critical for the initiation and maintenance of pancreatic ductal adenocarcinoma (PDAC) and is a known repressor of tumor immunity. Conditional elimination of KRAS∗ in genetic mouse models of PDAC leads to the reactivation of FAS, CD8+ T cell-mediated apoptosis, and complete eradication of tumors. KRAS∗ elimination recruits activated CD4+ and CD8+ T cells and promotes the activation of antigen-presenting cells. Mechanistically, KRAS∗-mediated immune evasion involves the epigenetic regulation of Fas death receptor in cancer cells, via methylation of its promoter region. Furthermore, analysis of human RNA sequencing identifies that high KRAS expression in PDAC tumors shows a lower proportion of CD8+ T cells and demonstrates shorter survival compared with tumors with low KRAS expression. This study highlights the role of CD8+ T cells in the eradication of PDAC following KRAS∗ elimination and provides a rationale for the combination of KRAS∗ targeting with immunotherapy to control PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Apoptosis , Carcinoma Ductal Pancreático/genética , Linfocitos T CD8-positivos , Epigénesis Genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
3.
Commun Biol ; 6(1): 765, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479893

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous disease characterized by high rate of therapy resistance. Since the cell of origin can impact response to therapy, it is crucial to understand the lineage composition of AML cells at time of therapy resistance. Here we leverage single-cell chromatin accessibility profiling of 22 AML bone marrow aspirates from eight patients at time of therapy resistance and following subsequent therapy to characterize their lineage landscape. Our findings reveal a complex lineage architecture of therapy-resistant AML cells that are primed for stem and progenitor lineages and spanning quiescent, activated and late stem cell/progenitor states. Remarkably, therapy-resistant AML cells are also composed of cells primed for differentiated myeloid, erythroid and even lymphoid lineages. The heterogeneous lineage composition persists following subsequent therapy, with early progenitor-driven features marking unfavorable prognosis in The Cancer Genome Atlas AML cohort. Pseudotime analysis further confirms the vast degree of heterogeneity driven by the dynamic changes in chromatin accessibility. Our findings suggest that therapy-resistant AML cells are characterized not only by stem and progenitor states, but also by a continuum of differentiated cellular lineages. The heterogeneity in lineages likely contributes to their therapy resistance by harboring different degrees of lineage-specific susceptibilities to therapy.


Asunto(s)
Cromatina , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Diferenciación Celular , División Celular , Linaje de la Célula/genética
4.
bioRxiv ; 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37090524

RESUMEN

Rationale: Human pluripotent stem cell-derived CMs (iPSC-CMs) are a valuable tool for disease modeling, cell therapy and to reconstruct the CM maturation process and identify, characterize factors that regulate maturation. The transition from immature fetal to adult CM entails coordinated regulation of the mature gene programming, which is characterized by the induction of myofilament and OXPHOS gene expression among others. Recent studies in Drosophila , C. elegans, and C2C12 myoblast cell lines have implicated the histone H3K4me3 demethylase KDM5 and its homologs, as a potential regulator of developmental gene program and mitochondrial function. We speculated that KDM5 may potentiate the maturation of iPSC-CMs by targeting a conserved epigenetic program that encompass mitochondrial OXPHOS and other CM specific maturation genes. Objectives: The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. Methods and Results: Immunoblot analysis revealed that KDM5A, B, and C expression was progressively downregulated in postnatal cardiomyocytes and absent in adult hearts and CMs. Additionally, KDM5 proteins were found to be persistently expressed in iPSC-CMs up to 60 days after the onset of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor-resulted in differential regulation of 2,372 genes including upregulation of Fatty acid oxidation (FAO), OXPHOS, and myogenic gene programs in iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the CUT&RUN assay revealed enriched H3K4me3 peaks at the promoter regions of FAO, OXPHOS, and sarcomere genes. Consistent with the chromatin and gene expression data, KDM5 inhibition led to increased expression of multiple sarcomere proteins, enhanced myofibrillar organization and improved calcium handling. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene, which is known to regulate OXPHOS and cardiomyocyte maturation, and resulted in its increased RNA and protein levels. Finally, KDM5 inhibition increased baseline, peak, and spare oxygen consumption rates in iPSC-CMs. Conclusions: KDM5 regulates the maturation of iPSC-CMs by epigenetically regulating the expression of ESRRA, OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.

5.
Cancer Discov ; 13(5): 1230-1249, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37067911

RESUMEN

Cancer-related alterations of the p53 tetramerization domain (TD) abrogate wild-type (WT) p53 function. They result in a protein that preferentially forms monomers or dimers, which are also normal p53 states under basal cellular conditions. However, their physiologic relevance is not well understood. We have established in vivo models for monomeric and dimeric p53, which model Li-Fraumeni syndrome patients with germline p53 TD alterations. p53 monomers are inactive forms of the protein. Unexpectedly, p53 dimers conferred some tumor suppression that is not mediated by canonical WT p53 activities. p53 dimers upregulate the PPAR pathway. These activities are associated with lower prevalence of thymic lymphomas and increased CD8+ T-cell differentiation. Lymphomas derived from dimeric p53 mice show cooperating alterations in the PPAR pathway, further implicating a role for these activities in tumor suppression. Our data reveal novel functions for p53 dimers and support the exploration of PPAR agonists as therapies. SIGNIFICANCE: New mouse models with TP53R342P (monomer) or TP53A347D (dimer) mutations mimic Li-Fraumeni syndrome. Although p53 monomers lack function, p53 dimers conferred noncanonical tumor-suppressive activities. We describe novel activities for p53 dimers facilitated by PPARs and propose these are "basal" p53 activities. See related commentary by Stieg et al., p. 1046. See related article by Choe et al., p. 1250. This article is highlighted in the In This Issue feature, p. 1027.


Asunto(s)
Síndrome de Li-Fraumeni , Animales , Ratones , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Activación Transcripcional , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Muerte Celular
6.
Proc Natl Acad Sci U S A ; 120(1): e2211832120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577061

RESUMEN

Androgen receptor (AR) and its splice variants (AR-SVs) promote prostate cancer (PCa) growth by orchestrating transcriptional reprogramming. Mechanisms by which the low complexity and intrinsically disordered primary transactivation domain (AF-1) of AR and AR-SVs regulate transcriptional programming in PCa remains poorly defined. Using omics, live and fixed fluorescent microscopy of cells, and purified AF-1 and AR-V7 recombinant proteins we show here that AF-1 and the AR-V7 splice variant form molecular condensates by liquid-liquid phase separation (LLPS) that exhibit disorder characteristics such as rapid intracellular mobility, coactivator interaction, and euchromatin induction. The LLPS and other disorder characteristics were reversed by a class of small-molecule-selective AR-irreversible covalent antagonists (SARICA) represented herein by UT-143 that covalently and selectively bind to C406 and C327 in the AF-1 region. Interfering with LLPS formation with UT-143 or mutagenesis resulted in chromatin condensation and dissociation of AR-V7 interactome, all culminating in a transcriptionally incompetent complex. Biochemical studies suggest that C327 and C406 in the AF-1 region are critical for condensate formation, AR-V7 function, and UT-143's irreversible AR inhibition. Therapeutically, UT-143 possesses drug-like pharmacokinetics and metabolism properties and inhibits PCa cell proliferation and tumor growth. Our work provides critical information suggesting that clinically important AR-V7 forms transcriptionally competent molecular condensates and covalently engaging C327 and C406 in AF-1, dissolves the condensates, and inhibits its function. The work also identifies a library of AF-1-binding AR and AR-SV-selective covalent inhibitors for the treatment of PCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos/metabolismo , Cisteína , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Antagonistas de Receptores Androgénicos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/patología , Línea Celular Tumoral , Isoformas de Proteínas/metabolismo
7.
Leukemia ; 36(5): 1261-1273, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35173274

RESUMEN

The NOTCH1-MYC-CD44 axis integrates cell-intrinsic and extrinsic signaling to ensure the persistence of leukemia-initiating cells (LICs) in T-cell acute lymphoblastic leukemia (T-ALL) but a common pathway to target this circuit is poorly defined. Bromodomain-containing protein 4 (BRD4) is implicated to have a role in the transcriptional regulation of oncogenes MYC and targets downstream of NOTCH1, and here we demonstrate its role in transcriptional regulation of CD44. Hence, targeting BRD4 will dismantle the NOTCH1-MYC-CD44 axis. As a proof of concept, degrading BRD4 with proteolysis targeting chimera (PROTAC) ARV-825, prolonged the survival of mice in Notch1 mutated patient-derived xenograft (PDX) and genetic models (ΔPTEN) of T-ALL. Single-cell proteomics analysis from the PDX model, demonstrated quantitative reduction of LICs (CD34+ CD7+ CD19-) and downregulation of the NOTCH1-MYC-CD44 axis, along with cell cycle, apoptosis and PI3K/Akt pathways. Moreover, secondary transplantation from PDX and ΔPTEN models of T-ALL, confirmed delayed leukemia development and extended survival of mice engrafted with T-ALL from ARV-825 treated mice, providing functional confirmation of depletion of LICs. Hence, BRD4 degradation is a promising LIC-targeting therapy for T-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Humanos , Receptores de Hialuranos/genética , Ratones , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Biol Chem ; 298(3): 101588, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35033534

RESUMEN

The methyl-lysine readers plant homeodomain finger protein 20 (PHF20) and its homolog PHF20-like protein 1 (PHF20L1) are known components of the nonspecific lethal (NSL) complex that regulates gene expression through its histone acetyltransferase activity. In the current model, both PHF homologs coexist in the same NSL complex, although this was not formally tested; nor have the functions of PHF20 and PHF20L1 regarding NSL complex integrity and transcriptional regulation been investigated. Here, we perform an in-depth biochemical and functional characterization of PHF20 and PHF20L1 in the context of the NSL complex. Using mass spectrometry, genome-wide chromatin analysis, and protein-domain mapping, we identify the existence of two distinct NSL complexes that exclusively contain either PHF20 or PHF20L1. We show that the C-terminal domains of PHF20 and PHF20L1 are essential for complex formation with NSL, and the Tudor 2 domains are required for chromatin binding. The genome-wide chromatin landscape of PHF20-PHF20L1 shows that these proteins bind mostly to the same genomic regions, at promoters of highly expressed/housekeeping genes. Yet, deletion of PHF20 and PHF20L1 does not abrogate gene expression or impact the recruitment of the NSL complex to those target gene promoters, suggesting the existence of an alternative mechanism that compensates for the transcription of genes whose sustained expression is important for critical cellular functions. This work shifts the current paradigm and lays the foundation for studies on the differential roles of PHF20 and PHF20L1 in regulating NSL complex activity in physiological and diseases states.


Asunto(s)
Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Proteínas de Homeodominio , Lisina , Factores de Transcripción , Acetilación , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lisina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Oncogene ; 40(41): 6049-6056, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34471235

RESUMEN

Yes-associated protein 1 (YAP1), a key player in the Hippo pathway, has been shown to play a critical role in tumor progression. However, the role of YAP1 in prostate cancer cell invasion, migration, and metastasis is not well defined. Through functional, transcriptomic, epigenomic, and proteomic analyses, we showed that prolyl hydroxylation of YAP1 plays a critical role in the suppression of cell migration, invasion, and metastasis in prostate cancer. Knockdown (KD) or knockout (KO) of YAP1 led to an increase in cell migration, invasion, and metastasis in prostate cancer cells. Microarray analysis showed that the EMT pathway was activated in Yap1-KD cells. ChIP-seq analysis showed that YAP1 target genes are enriched in pathways regulating cell migration. Mass spectrometry analysis identified P4H prolyl hydroxylase in the YAP1 complex and YAP1 was hydroxylated at multiple proline residues. Proline-to-alanine mutations of YAP1 isoform 3 identified proline 174 as a critical residue, and its hydroxylation suppressed cell migration, invasion, and metastasis. KO of P4ha2 led to an increase in cell migration and invasion, which was reversed upon Yap1 KD. Our study identified a novel regulatory mechanism of YAP1 by which P4HA2-dependent prolyl hydroxylation of YAP1 determines its transcriptional activities and its function in prostate cancer metastasis.


Asunto(s)
Prolil Hidroxilasas/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Animales , Movimiento Celular/fisiología , Humanos , Masculino , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias de la Próstata/patología , Proteínas Señalizadoras YAP/antagonistas & inhibidores
10.
Oncogene ; 39(40): 6387-6392, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32820250

RESUMEN

After publication of this Article, the Authors noticed errors in some of the Figures. In Figures 2e, 2f-g, 4a, 4j, 5a and 6b, unmatched ß-actin was inadvertently used as loading control for the immunoblots. These have been corrected using repeat data from a similar set of samples and the revised Figures containing matched ß-actin and their respective quantification data are included below. In Figure 7a, the same image was inadvertently used to represent tumors 3 and 5 in the control group. This error has been corrected using original images of tumors 3 and 5 in the control group. Additional corrections have been made in the Article and Figure legends to enhance the clarity of the description. NAD was replaced by NADP. NAD/NADP was replaced by NADP/NADPH. The description of the antibody source and dilution for the antigens PFKFB4 (Abcam, 1:1000), G6PD, and HK1 (Cell Signaling, 1:1,000) have been included in the Methods section for Western Blot. The legend for Figure 4e and 4j has been updated. The HTML and PDF versions of this Article have been corrected. The scientific conclusions of this paper have not been affected.

11.
RNA Biol ; 17(11): 1648-1656, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32432959

RESUMEN

Transcription factor p53 is activated in response to numerous stress stimuli in order to promote repair and survival or death of abnormal cells. For decades, regulatory mechanisms and downstream targets that execute the many biological functions of tumour suppressor p53 largely focused on the products of protein-coding genes. Recently, an entirely new class of molecules, termed long non-coding RNAs (lncRNAs), were discovered as key regulatory players in shaping p53 activity and biological outcomes. Many p53-regulated lncRNAs are now reported to either directly or indirectly intervene in p53-regulatory networks, generally in fine-tuning p53's tumour surveillance programme. Recent studies reveal that signals that converge upon p53 to regulate its activity, and molecules that implement downstream p53-response include both proteins and lncRNAs. In this review, we discuss the non-proteomic component of p53-regulatory networks, focusing on lncRNAs regulated by p53 and/or that regulate p53 activity, and their impact on biological outcomes.


Asunto(s)
Regulación de la Expresión Génica , ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Biomarcadores , Redes Reguladoras de Genes , Humanos , Unión Proteica , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética
12.
Cancer Immunol Res ; 8(7): 952-965, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265228

RESUMEN

Programmed cell death 1 ligand 1 (PD-L1) is a key driver of tumor-mediated immune suppression, and targeting it with antibodies can induce therapeutic responses. Given the costs and associated toxicity of PD-L1 blockade, alternative therapeutic strategies are needed. Using reverse-phase protein arrays to assess drugs in use or likely to enter trials, we performed a candidate drug screen for inhibitors of PD-L1 expression and identified verteporfin as a possible small-molecule inhibitor. Verteporfin suppressed basal and IFN-induced PD-L1 expression in vitro and in vivo through Golgi-related autophagy and disruption of the STAT1-IRF1-TRIM28 signaling cascade, but did not affect the proinflammatory CIITA-MHC II cascade. Within the tumor microenvironment, verteporfin inhibited PD-L1 expression, which associated with enhanced T-lymphocyte infiltration. Inhibition of chromatin-associated enzyme PARP1 induced PD-L1 expression in high endothelial venules (HEV) in tumors and, when combined with verteporfin, enhanced therapeutic efficacy. Thus, verteporfin effectively targets PD-L1 through transcriptional and posttranslational mechanisms, representing an alternative therapeutic strategy for targeting PD-L1.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Factor 1 Regulador del Interferón/metabolismo , Neoplasias/tratamiento farmacológico , Factor de Transcripción STAT1/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Verteporfina/farmacología , Animales , Autofagia/efectos de los fármacos , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Fármacos Fotosensibilizantes/farmacología , Transducción de Señal , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
13.
Oncogene ; 39(40): 6265-6285, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31383940

RESUMEN

Advanced Bladder Cancer (BLCA) remains a clinical challenge that lacks effective therapeutic measures. Here, we show that distinct, stage-wise metabolic alterations in BLCA are associated with the loss of function of aldehyde oxidase (AOX1). AOX1 associated metabolites have a high predictive value for advanced BLCA and our findings demonstrate that AOX1 is epigenetically silenced during BLCA progression by the methyltransferase activity of EZH2. Knockdown (KD) of AOX1 in normal bladder epithelial cells re-wires the tryptophan-kynurenine pathway resulting in elevated NADP levels which may increase metabolic flux through the pentose phosphate (PPP) pathway, enabling increased nucleotide synthesis, and promoting cell invasion. Inhibition of NADP synthesis rescues the metabolic effects of AOX1 KD. Ectopic AOX1 expression decreases NADP production, PPP flux and nucleotide synthesis, while decreasing invasion in cell line models and suppressing growth in tumor xenografts. Further gain and loss of AOX1 confirm the EZH2-dependent activation, metabolic deregulation, and tumor growth in BLCA. Our findings highlight the therapeutic potential of AOX1 and provide a basis for the development of prognostic markers for advanced BLCA.


Asunto(s)
Aldehído Oxidasa/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Vejiga Urinaria/patología , Aldehído Oxidasa/metabolismo , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Quinurenina/metabolismo , Masculino , Metabolómica , Ratones , NADP/metabolismo , Invasividad Neoplásica , Estadificación de Neoplasias , Nucleótidos/biosíntesis , Vía de Pentosa Fosfato/genética , RNA-Seq , Análisis de Matrices Tisulares , Triptófano/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto
14.
EBioMedicine ; 50: 55-66, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31761621

RESUMEN

BACKGROUND: Mesoderm Posterior 1 (MESP1) belongs to the family of basic helix-loop-helix transcription factors. It is a master regulator of mesendoderm development, leading to formation of organs such as heart and lung. However, its role in adult pathophysiology remains unknown. Here, we report for the first time a previously-unknown association of MESP1 with non-small cell lung cancer (NSCLC). METHODS: MESP1 mRNA and protein levels were measured in NSCLC-derived cells by qPCR and immunoblotting respectively. Colony formation assay, colorimetric cell proliferation assay and soft agar colony formation assays were used to assess the effects of MESP1 knockdown and overexpression in vitro. RNA-sequencing and chromatin immunoprecipitation (ChIP)-qPCR were used to determine direct target genes of MESP1. Subcutaneous injection of MESP1-depleted NSCLC cells in immuno-compromised mice was done to study the effects of MESP1 mediated tumor formation in vivo. FINDINGS: We found that MESP1 expression correlates with poor prognosis in NSCLC patients, and is critical for proliferation and survival of NSCLC-derived cells, thus implicating MESP1 as a lung cancer oncogene. Ectopic MESP1 expression cooperates with loss of tumor suppressor ARF to transform murine fibroblasts. Xenografts from MESP1-depleted cells showed decreased tumor growth in vivo. Global transcriptome analysis revealed a MESP1 DNA-binding-dependent gene signature associated with various hallmarks of cancer, suggesting that transcription activity of MESP1 is most likely responsible for its oncogenic abilities. INTERPRETATION: Our study demonstrates MESP1 as a previously-unknown lineage-survival oncogene in NSCLC which may serve as a potential prognostic marker and therapeutic target for lung cancer in the future.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Transformación Celular Neoplásica/genética , Regulación de la Expresión Génica , Neoplasias Pulmonares/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones
15.
Development ; 145(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29654218

RESUMEN

Most human cancers harbor mutations in the gene encoding p53. As a result, research on p53 in the past few decades has focused primarily on its role as a tumor suppressor. One consequence of this focus is that the functions of p53 in development have largely been ignored. However, recent advances, such as the genomic profiling of embryonic stem cells, have uncovered the significance and mechanisms of p53 functions in mammalian cell differentiation and development. As we review here, these recent findings reveal roles that complement the well-established roles for p53 in tumor suppression.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Genes p53 , Proteína p53 Supresora de Tumor/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Neoplasias/genética , Neoplasias/patología , Neoplasias/fisiopatología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
16.
Dis Model Mech ; 10(10): 1211-1216, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754837

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is a genetically dominant myopathy caused by mutations that disrupt repression of the normally silent DUX4 gene, which encodes a transcription factor that has been shown to interfere with myogenesis when misexpressed at very low levels in myoblasts and to cause cell death when overexpressed at high levels. A previous report using adeno-associated virus to deliver high levels of DUX4 to mouse skeletal muscle demonstrated severe pathology that was suppressed on a p53-knockout background, implying that DUX4 acted through the p53 pathway. Here, we investigate the p53 dependence of DUX4 using various in vitro and in vivo models. We find that inhibiting p53 has no effect on the cytoxicity of DUX4 on C2C12 myoblasts, and that expression of DUX4 does not lead to activation of the p53 pathway. DUX4 does lead to expression of the classic p53 target gene Cdkn1a (p21) but in a p53-independent manner. Meta-analysis of 5 publicly available data sets of DUX4 transcriptional profiles in both human and mouse cells shows no evidence of p53 activation, and further reveals that Cdkn1a is a mouse-specific target of DUX4. When the inducible DUX4 mouse model is crossed onto the p53-null background, we find no suppression of the male-specific lethality or skin phenotypes that are characteristic of the DUX4 transgene, and find that primary myoblasts from this mouse are still killed by DUX4 expression. These data challenge the notion that the p53 pathway is central to the pathogenicity of DUX4.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Muerte Celular , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Proteínas de Homeodominio/genética , Humanos , Ratones Noqueados , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos Esqueléticos/patología , Fenotipo , Transducción de Señal , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
19.
J Biol Chem ; 292(5): 2051, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28159764
20.
J Biol Chem ; 292(5): 2052, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28159765
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...