Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Bioallied Sci ; 16(Suppl 1): S8-S10, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38595399

RESUMEN

The proper treatment of diseases has greatly benefited from dental technological advancements. The dentist may view, precisely measure, and create models of both hard and soft tissue using 3D printing. The most cutting-edge technique in dentistry is 3D printing; but it also lacks the user-training trainee. In this paper, we will demonstrate how it is employed in various dental procedures.

2.
Sci Adv ; 10(17): eadm9281, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38657074

RESUMEN

Critical aspects of physiology and cell function exhibit self-sustained ~24-hour variations termed circadian rhythms. In the liver, circadian rhythms play fundamental roles in maintaining organ homeostasis. Here, we established and characterized an in vitro liver experimental system in which primary human hepatocytes display self-sustained oscillations. By generating gene expression profiles of these hepatocytes over time, we demonstrated that their transcriptional state is dynamic across 24 hours and identified a set of cycling genes with functions related to inflammation, drug metabolism, and energy homeostasis. We designed and tested a treatment protocol to minimize atorvastatin- and acetaminophen-induced hepatotoxicity. Last, we documented circadian-dependent induction of pro-inflammatory cytokines when triggered by LPS, IFN-ß, or Plasmodium infection in human hepatocytes. Collectively, our findings emphasize that the phase of the circadian cycle has a robust impact on the efficacy and toxicity of drugs, and we provide a test bed to study the timing and magnitude of inflammatory responses over the course of infection in human liver.


Asunto(s)
Ritmo Circadiano , Hepatocitos , Inflamación , Hígado , Humanos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Inflamación/metabolismo , Hígado/metabolismo , Acetaminofén/farmacología , Atorvastatina/farmacología , Citocinas/metabolismo , Inactivación Metabólica , Lipopolisacáridos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Cultivadas
3.
Expert Opin Investig Drugs ; 33(3): 171-182, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38372666

RESUMEN

INTRODUCTION: Targeted therapy is used to treat lung adenocarcinoma caused by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain and rare subtypes (<5%) of non-small cell lung cancer. These subtypes include fusion oncoproteins like anaplastic lymphoma kinase (ALK), ROS1, rearranged during transfection (RET), and other receptor tyrosine kinases (RTKs). The use of diverse selective oral inhibitors, including those targeting rat sarcoma viral oncogene homolog (KRAS) mutations, has significantly improved clinical responses, extending progression-free and overall survival. AREAS COVERED: Resistance remains a critical issue in lung adenocarcinoma, notably in EGFR mutant, echinoderm microtubule associated protein-like 4 (EML4)-ALK fusion, and KRAS mutant tumors, often associated with epithelial-to-mesenchymal transition (EMT). EXPERT OPINION: Despite advancements in next generation EGFR inhibitors and EML4-ALK therapies with enhanced brain penetrance and identifying resistance mutations, overcoming resistance has not been abated. Various strategies are being explored to overcome this issue to achieve prolonged cancer remission and delay resistance. Targeting yes-associated protein (YAP) and the mechanisms associated with YAP activation through Hippo-dependent or independent pathways, is desirable. Additionally, the exploration of liquid-liquid phase separation in fusion oncoproteins forming condensates in the cytoplasm for oncogenic signaling is a promising field for the development of new treatments.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/uso terapéutico , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/uso terapéutico , Adenocarcinoma del Pulmón/tratamiento farmacológico , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/uso terapéutico , Mutación , Receptores ErbB/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
4.
Crit Rev Oncol Hematol ; 195: 104228, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38072173

RESUMEN

KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Paclitaxel , Carboplatino , Mutación , Péptidos y Proteínas de Señalización Intracelular , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas
5.
Cancer Biol Med ; 20(7)2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37381723

RESUMEN

Lung oncogenesis relies on intracellular cysteine to overcome oxidative stress. Several tumor types, including non-small cell lung cancer (NSCLC), upregulate the system xc- cystine/glutamate antiporter (xCT) through overexpression of the cystine transporter SLC7A11, thus sustaining intracellular cysteine levels to support glutathione synthesis. Nuclear factor erythroid 2-related factor 2 (NRF2) serves as a master regulator of oxidative stress resistance by regulating SLC7A11, whereas Kelch-like ECH-associated protein (KEAP1) acts as a cytoplasmic repressor of the oxidative responsive transcription factor NRF2. Mutations in KEAP1/NRF2 and p53 induce SLC7A11 activation in NSCLC. Extracellular cystine is crucial in supplying the intracellular cysteine levels necessary to combat oxidative stress. Disruptions in cystine availability lead to iron-dependent lipid peroxidation, thus resulting in a type of cell death called ferroptosis. Pharmacologic inhibitors of xCT (either SLC7A11 or GPX4) induce ferroptosis of NSCLC cells and other tumor types. When cystine uptake is impaired, the intracellular cysteine pool can be sustained by the transsulfuration pathway, which is catalyzed by cystathionine-B-synthase (CBS) and cystathionine g-lyase (CSE). The involvement of exogenous cysteine/cystine and the transsulfuration pathway in the cysteine pool and downstream metabolites results in compromised CD8+ T cell function and evasion of immunotherapy, diminishing immune response and potentially reducing the effectiveness of immunotherapeutic interventions. Pyroptosis is a previously unrecognized form of regulated cell death. In NSCLCs driven by EGFR, ALK, or KRAS, selective inhibitors induce pyroptotic cell death as well as apoptosis. After targeted therapy, the mitochondrial intrinsic apoptotic pathway is activated, thus leading to the cleavage and activation of caspase-3. Consequently, gasdermin E is activated, thus leading to permeabilization of the cytoplasmic membrane and cell-lytic pyroptosis (indicated by characteristic cell membrane ballooning). Breakthroughs in KRAS G12C allele-specific inhibitors and potential mechanisms of resistance are also discussed herein.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cistina/metabolismo , Cisteína , Especies Reactivas de Oxígeno/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Cistationina , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Neoplasias Pulmonares/metabolismo
6.
Front Chem ; 11: 1114109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817178

RESUMEN

Introduction: The use of plant extracts in the green synthesis of metallic nanoparticles is one of the simplest, most practical, economical, and ecologically friendly methods for avoiding the use of toxic chemicals. Method: Silver nanoparticles (AgNPs) were synthesized, employing a high-efficiency, non- toxic, cost-effective, green, and simple technique that included the use of Salacia oblonga root extract (SOR) as a capping agent compared to synthetic nanoparticles. The use of S. oblonga can be seen in traditional medicines for treating diabetes, obesity, rheumatism, gonorrhea, asthma, and hyperglycemia. The objectives of the current study were to green synthesize S. oblonga root extract silver nanoparticles (SOR-AgNPs), characterize them, and study their antioxidant, antibacterial, and antidiabetic activities. Result: The shape of SOR-AgNPs was spherical, at less than 99.8 nm in size, and exhibited a crystalline peak at XRD. The green synthesized SOR-AgNPs showed significant antioxidant properties like DPPH (80.64 µg/mL), reducing power capacity (81.09 ± SEM µg/mL), nitric oxide (96.58 µg/mL), and hydroxyl (58.38 µg/mL) radical scavenging activities. The MIC of SOR-AgNPs was lower in gram-positive bacteria. The SOR-AgNPs have displayed efficient inhibitory activity against α-amylase, with an EC50 of 58.38 µg/mL. Analysis of capping protein around the SOR-AgNPs showed a molecular weight of 30 kDa. Discussion: These SOR-AgNPs could be used as antibacterial and antidiabetic drugs in the future as it is cheap, non-toxic, and environmentally friendly. Bio-fabricated AgNPs had a significant impact on bacterial strains and could be used as a starting point for future antibacterial drug development.

7.
Molecules ; 28(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36770771

RESUMEN

Bacterial infections are one of the leading causes of morbidity, mortality, and healthcare complications in patients. Leptospirosis is found to be the most prevalent, re-emergent, and neglected tropical zoonotic disease worldwide. The adaptation to various environmental conditions has made Leptospira acquire a large genome (~4.6 Mb) and a complex outer membrane, making it unique among bacteria that mimic the symptoms of jaundice and hemorrhage. Sph2 is another important virulence factor that enhances hemolytic sphingomyelinase-capable of moving inside mitochondria-which increases the ROS level and decreases the mitochondrial membrane potential, thereby leading to cell apoptosis. In the present study, 25 suspected bovine serum samples were subjected to the Microscopic Agglutination Test (MAT) across the Mysuru region. Different samples, such as urine, serum, and aborted materials from the confirmed MAT-positive animals, were used for isolation and genomic detection by conventional PCR targeting virulence gene, Lipl32, using specific primers. Further, in vitro and in silico studies were performed on isolated cultures to assess the anti-leptospiral, anti-hemolytic, and sphingomyelinase enzyme inhibition using novel pseudopeptides. The microdilution technique (MDT) and dark field microscope (DFM) assays revealed that at a concentration of 62.5 µg/mL, the pseudopeptide inhibited 100% of the growth of Leptospira spp., suggesting its efficiency in the treatment of leptospirosis. The flow cytometry analyses show the potency of the pseudopeptide against sphingomyelinase enzymes using human umbilical vein endothelial cells (HUVECs). Thus, the present study demonstrated the efficacy of the pseudopeptide in the inhibition of the growth of Leptospira, and therefore, this can be used as an alternative drug for the treatment of leptospirosis.


Asunto(s)
Antiinfecciosos , Leptospira , Leptospirosis , Animales , Humanos , Células Endoteliales , Leptospira/genética , Leptospirosis/tratamiento farmacológico , Leptospirosis/diagnóstico , Leptospirosis/microbiología , Esfingomielina Fosfodiesterasa , Hemostáticos/farmacología
8.
J Biomol Struct Dyn ; 41(20): 10869-10884, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36576118

RESUMEN

The spike (S) glycoprotein and nucleocapsid (N) proteins are the crucial pathogenic proteins of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) virus during its interaction with the host. Even FDA-approved drugs like dexamethasone and grazoprevir are not able to curb the viral progression inside the host and are reported with adverse effects on body metabolism. In this context, we aim to report corilagin a novel, potential dual inhibitor of S and N proteins from Terminalia chebula. The bioactive compounds of T. chebula were subjected to a series of computational investigations including molecular docking simulations, molecular dynamics (MD) simulations, binding free energy calculations, and PASS pharmacological analysis. The results obtained from these studies revealed that corilagin was highly interactive with the S (-8.9 kcal/mol) and N (-9.2 kcal/mol) proteins, thereby showing dual inhibition activity. It was also found to be stable enough to induce biological activity inside the inhibitor binding pocket of the target enzymes throughout the dynamics simulation run for 100 ns. This is also confirmed by the changes in the protein conformations, evaluated using free energy landscapes. Outcomes from this investigation identify corilagin as the lead potential dual inhibitor of S and N proteins of SARS-CoV-2, which could be taken for biological studies in near future.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Terminalia , SARS-CoV-2 , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas
9.
Molecules ; 27(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500380

RESUMEN

The ever-expanding pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has gained attention as COVID-19 and caused an emergency in public health to an unmatched level to date. However, the treatments used are the only options; currently, no effective and licensed medications are available to combat disease transmission, necessitating further research. In the present study, an in silico-based virtual screening of anti-HIV bioactive compounds from medicinal plants was carried out through molecular docking against the main protease (Mpro) (PDB: 6LU7) of SARS-CoV-2, which is a key enzyme responsible for virus replication. A total of 16 anti-HIV compounds were found to have a binding affinity greater than -8.9 kcal/mol out of 150 compounds screened. Pseudohypericin had a high affinity with the energy of -10.2 kcal/mol, demonstrating amino acid residual interactions with LEU141, GLU166, ARG188, and GLN192, followed by Hypericin (-10.1 kcal/mol). Moreover, the ADME (Absorption, Distribution, Metabolism and Excretion) analysis of Pseudohypericin and Hypericin recorded a low bioavailability (BA) score of 0.17 and violated Lipinski's rule of drug-likeness. The docking and molecular simulations indicated that the quinone compound, Pseudohypericin, could be tested in vitro and in vivo as potent molecules against COVID-19 disease prior to clinical trials.This was also supported by the theoretical and computational studies conducted. The global and local descriptors, which are the underpinnings of Conceptual Density FunctionalTheory (CDFT) have beenpredicted through successful model chemistry, hoping that they could be of help in the comprehension of the chemical reactivity properties of the molecular systems considered in this study.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Proteasas 3C de Coronavirus , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología
10.
Oman Med J ; 37(5): e419, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36341003

RESUMEN

Objectives: Non-small cell lung cancer (NSCLC) accounts for 75-85% of all lung cancer diagnoses. This meta-analysis sought to estimate the overall survival (OS) of NSCLC based on randomized control trials which had compared docetaxel with kinase inhibitors, antineoplastic agents, and monoclonal antibodies as second-line chemotherapy for advanced NSCLC. Methods: We selected 18 randomized control trials which used docetaxel as the standard treatment arm, while kinase inhibitors, antineoplastic agents, and monoclonal antibodies constituted the experimental arm. The methodological quality of the trial was classified according to the Modified Jadad score. Several steps were taken to reduce publication bias. A forest plot was used to graphically summarize the meta-analysis. Results: The Hedge's g value of antineoplastic agents was 0.11 (95% CI: -0.03-0.26), while for kinase inhibitors was 0.04 (95% CI: -0.10-0.17) and monoclonal antibodies was 0.05 (95% CI: -0.02-0.13). Forest plot showed a clear though only slightly higher overall survival using docetaxel compared to those of the antineoplastic agents, kinase inhibitors, and monoclonal antibodies, due to the existence of moderate heterogeneity and lower impact. Conclusions: Overall, the patients in these studies who were in the standard (docetaxel) treatment arm had slightly better OS than those in the intervention treatment arm. As per the results, docetaxel was more effective in the second-line treatment of advanced NSCLC than antineoplastic agents, monoclonal antibodies, and kinase inhibitors. We infer that docetaxel-based second-line therapy for patients with advanced NSCLC is supported by our meta-analysis.

12.
J Mol Model ; 28(8): 209, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35789297

RESUMEN

Peptides are currently the most promising lead molecules. Quorum sensing peptides have a variety of structural features and are regularly exposed to post-translational modifications. Antiparkinsonian drugs lose their efficacy after a long period of use, and patients develop motor problems such as drug-induced dyskinesia (DIDs). The interaction between PDE10A and cAMP is necessary for dopamine neurotransmission and may play a role in Parkinson's disease pathogenesis. cAMP and cGMP are cyclic nucleotides that act as secondary messengers in the signal transduction pathway, influencing a range of CNS activities. PDE enzymes hydrolyze phosphodiester bonds to break down cAMP and cGMP, allowing them to control intracellular levels of these second messengers effectively. PDE expression, and hence cyclic nucleotide levels and their downstream targets, may change with age and in numerous age-related illnesses, including Parkinson's disease, according to mounting evidence. At the peak of dyskinesias, cyclic nucleotide levels were lower, and using phosphodiesterase inhibitors before antiparkinsonian medicines reduced the severity of dyskinesias. In a recent study, PapRIV was found to have the ability to activate BV-2 microglia cells, indicating that this quorum sensing peptide may play a role in gut-brain contact. As a result of the current in silico work, mainly focused on QSPs as a lead molecule for inhibiting PDE10A, the SRNAT QSP sequence has been a potent molecule in molecular docking and molecular dynamics simulations. Furthermore, we can test the efficiency of therapeutic components in vitro and in vivo utilizing this computational approach against PDE10A.


Asunto(s)
Discinesias , Enfermedad de Parkinson , GMP Cíclico/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Péptidos/uso terapéutico , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/uso terapéutico , Percepción de Quorum
13.
J Lipid Res ; 63(4): 100192, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278409

RESUMEN

Oral and gut Bacteroidetes produce unique classes of serine-glycine lipodipeptides and glycine aminolipids that signal through host Toll-like receptor 2. These glycine lipids have also been detected in human arteries, but their effects on atherosclerosis are unknown. Here, we sought to investigate the bioactivity of bacterial glycine lipids in mouse models of atherosclerosis. Lipid 654 (L654), a serine-glycine lipodipeptide species, was first tested in a high-fat diet (HFD)-fed Ldlr-/- model of atherosclerosis. Intraperitoneal administration of L654 over 7 weeks to HFD-fed Ldlr-/- mice resulted in hypocholesterolemic effects and significantly attenuated the progression of atherosclerosis. We found that L654 also reduced liver inflammatory and extracellular matrix gene expression, which may be related to inhibition of macrophage activation as demonstrated in vivo by lower major histocompatibility complex class II gene expression and confirmed in cell experiments. In addition, L654 and other bacterial glycine lipids in feces, liver, and serum were markedly reduced alongside changes in Bacteroidetes relative abundance in HFD-fed mice. Finally, we tested the bioactivities of L654 and related lipid 567 in chow-fed Apoe-/- mice, which displayed much higher fecal glycine lipids relative to HFD-fed Ldlr-/- mice. Administration of L654 or lipid 567 for 7 weeks to these mice reduced the liver injury marker alanine aminotransferase, but other effects seen in Ldlr-/- were not observed. Therefore, we conclude that conditions in which gut microbiome-derived glycine lipids are lost, such as HFD, may exacerbate the development of atherosclerosis and liver injury, whereas correction of such depletion may protect from these disorders.


Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Animales , Aterosclerosis/genética , Bacterias , Bacteroidetes , Dieta Alta en Grasa/efectos adversos , Glicina/farmacología , Hígado , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Serina
14.
Molecules ; 27(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35209226

RESUMEN

Researchers are interested in Schiff bases and their metal complexes because they offer a wide range of applications. The chemistry of Schiff bases of heterocompounds has got a lot of attention because of the metal's ability to coordinate with Schiff base ligands. In the current study, a new bidentate Schiff base ligand, N-((1H-pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine (MPM) has been synthesized by condensing 6-methoxypyridine-3-amine with pyrrole-2-carbaldehyde. Further, MPM is used to prepare Cu(II) and Co(II) metal complexes. Analytical and spectroscopic techniques are used for the structural elucidation of the synthesized compounds. Both MPM and its metal complexes were screened against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Klebsiella pneumoniae species for antimicrobial studies. Furthermore, these compounds were subjected to in silico studies against bacterial proteins to comprehend their best non-bonded interactions. The results confirmed that the Schiff base ligand show considerably higher binding affinity with good hydrogen bonding and hydrophobic interactions against various tested microbial species. These results were complemented with a report of the Conceptual DFT global reactivity descriptors of the studied compounds together with their biological scores and their ADMET computed parameters.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Cobalto/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/síntesis química , Técnicas de Química Sintética , Complejos de Coordinación/síntesis química , Teoría Funcional de la Densidad , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Bases de Schiff/química , Análisis Espectral
15.
Am J Clin Pathol ; 157(2): 305-313, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-34542582

RESUMEN

OBJECTIVES: The pathologic differences between hepatocellular carcinoma (HCC) arising in noncirrhotic and cirrhotic livers have not been well studied. METHODS: We performed a retrospective analysis of 378 HCC cases (95 in noncirrhotic, 283 in cirrhotic livers) from pathology archives (2010-2017). RESULTS: Patients without cirrhosis were more likely to have hepatitis B (13.68% vs 2.83%, P < .001) or no known liver disease (30.53% vs 4.24%, P < .001), while hepatitis C was more common in patients with cirrhosis (65.72% vs 30.53%, P < .001). HCCs in noncirrhotic livers were larger in size (P < .001); were more likely to have a macrotrabecular histologic pattern (13.68% vs 4.95%, P < .01); were more likely to have fibrolamellar (3.16% vs 0%, P = .02), macrotrabecular-massive (13.68% vs 6.01%, P = .03), and clear cell (16.84% vs 6.71%, P < .01) subtypes; have a higher histologic grade (P < .01); be anaplastic tumor cells (P < .001); have a higher rate of vascular invasion (P < .01); and have a higher tumor stage (P = .04). CONCLUSIONS: The findings indicate that HCCs in noncirrhotic livers demonstrate a larger tumor size; have a more macrotrabecular histologic pattern; have fibrolamellar, macrotrabecular-massive, and clear cell subtypes; have a higher tumor grade and stage; have a higher rate of vascular invasion; and have more anaplastic tumor cells compared with cirrhotic livers. Further studies to explore different pathways that promote oncogenesis in noncirrhotic livers are needed to better understand the pathogenesis of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patología , Humanos , Cirrosis Hepática/complicaciones , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Estudios Retrospectivos
16.
Bioinformation ; 18(8): 683-691, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37323557

RESUMEN

There is a shred of evidence to suggest that Emblica officinalis Gaertn, the botanical name for amla seeds, has greater medicinal potential than amla fruit. We conducted this work to assess the anti-inflammatory, antibacterial, and antioxidant capacities of E. officinalis seed extracts. The bioactive components from the seeds were fractionated using chloroform, hexane, methanol, and diethyl ether, according to the polarity of the solvents. The total amount of phenolic and flavonoid was estimated. Both the reducing power and antioxidant capacities of the extracts were evaluated using the DPPH (1,1-diphenyl-2-picryl-hydrazyl) technique. 15-lipoxygenase (LOX) was inhibited by seed extracts at doses ranging from 5 to 25 micrograms. In silico docking was employed to assess the results. Some human pathogenic microorganisms were tested for their antibacterial activity using the agar disc diffusion method. Escherichia coli, Proteus vulgaris, and Klebsiella pneumonia were inhibited by a methanolic extract with an IC50 value of 58g, making it the most common organic solvent extract. Methanolic extracts also showed good antioxidant and antibacterial activity. Our investigation led us to discover that amla seeds have anti-inflammatory, antioxidant, and antibacterial effects.

17.
Front Oncol ; 11: 741326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692523

RESUMEN

Non-small cell lung cancer (NSCLC) is a prominent subtype of lung carcinoma that accounts for the majority of cancer-related deaths globally, and it is responsible for about 80% to 85% of lung cancers. Mitogen-Activated Protein Kinase (MAPK) signaling pathways are a vital aspect of NSCLC, and have aided in the advancement of therapies for this carcinoma. Targeting the Ras/Raf/MEK/ERK pathway is a promising and alternative method in NSCLC treatment, which is highlighted in this review. The introduction of targeted medicines has revolutionized the treatment of patients with this carcinoma. When combined with current systems biology-driven stratagems, repurposing non-cancer drugs into new therapeutic niches presents a cost-effective and efficient technique with enhancing outcomes for discovering novel pharmacological activity. This article highlights the successful cutting-edge techniques while focusing on NSCLC targeted therapies. The ultimate challenge will be integrating these repurposed drugs into the therapeutic regimen of patients affected with NSCLC to potentially increase lung cancer cure rates.

18.
Front Chem ; 9: 741037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692640

RESUMEN

Over the years, Alzheimer's disease (AD) treatments have been a major focus, culminating in the identification of promising therapeutic targets. A herbal therapy approach has been required by the demand of AD stage-dependent optimal settings. Present study describes the evaluation of anti-acetylcholinesterase (AChE) activity of hydroxyapatite nanoparticles derived from an Acorus calamus rhizome extract (AC-HAp NPs). The structure and morphology of as-prepared (AC-HAp NPs) was confirmed using powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The crystalline nature of as-prepared AC-HAp NPs was evident from XRD pattern. The SEM analysis suggested the spherical nature of the synthesized material with an average diameter between 30 and 50 nm. Further, the TEM and HR-TEM images revealed the shape and size of as-prepared (AC-HAp NPs). The interplanar distance between two lattice fringes was found to be 0.342 nm, which further supported the crystalline nature of the material synthesized. The anti-acetylcholinesterase activity of AC-HAp NPs was greater as compared to that of pure HAp NPs. The mechanistic evaluation of such an activity carried out using in silico studies suggested that the anti-acetylcholinesterase activity of phytoconstituents derived from Acorus calamus rhizome extract was mediated by BNDF, APOE4, PKC-γ, BACE1 and γ-secretase proteins. The global and local descriptors, which are the underpinnings of Conceptual Density Functional Theory (CDFT), have been predicted through the MN12SX/Def2TZVP/H2O model chemistry to help in the comprehension of the chemical reactivity properties of the five ligands considered in this study. With the further objective of analyzing their bioactivity, the CDFT studies are complemented with the estimation of some useful computed pharmacokinetics indices, their predicted biological targets, and the ADMET parameters related to the bioavailability of the five ligands are also reported.

19.
Sci Rep ; 11(1): 7784, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833308

RESUMEN

Nuclear radiation shielding capabilities for a glass series 20Bi2O3 - xPbO - (80 - 2x)B2O3 - xGeO2 (where x = 5, 10, 20, and 30 mol%) have been investigated using the Phy-X/PSD software and Monte Carlo N-Particle transport code. The mass attenuation coefficients (µm) of selected samples have been estimated through XCOM dependent Phy-X/PSD program and MCNP-5 code in the photon-energy range 0.015-15 MeV. So obtained µm values are used to calculate other γ-ray shielding parameters such as half-value layer (HVL), mean-free-path (MFP), etc. The calculated µm values were found to be 71.20 cm2/g, 76.03 cm2/g, 84.24 cm2/g, and 90.94 cm2/g for four glasses S1 to S4, respectively. The effective atomic number (Zeff)values vary between 69.87 and 17.11 for S1 or 75.66 and 29.11 for S4 over 0.05-15 MeV of photon-energy. Sample S4, which has a larger PbO/GeO2 of 30 mol% in the bismuth-borate glass, possesses the lowest MFP and HVL, providing higher radiation protection efficiency compared to all other combinations. It shows outperformance while compared the calculated parameters (HVL and MFP) with the commercial shielding glasses, different alloys, polymers, standard shielding concretes, and ceramics. Geometric Progression (G-P) was applied for evaluating the energy absorption and exposure buildup factors at energies 0.015-15 MeV with penetration depths up to 40 mfp. The buildup factors showed dependence on the MFP and photon-energy as well. The studied samples' neutron shielding behavior was also evaluated by calculating the fast neutron removal cross-section (ΣR), i.e. found to be 0.139 cm-1 for S1, 0.133 cm-1 for S2, 0.128 cm-1 for S3, and 0.12 cm-1 for S4. The results reveal a great potential for using a glass composite sample S4 in radiation protection applications.

20.
Saudi J Biol Sci ; 28(1): 1040-1051, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33424398

RESUMEN

The novel coronavirus pandemic has spread over in 213 countries as of July 2020. Approximately 12 million people have been infected so far according to the reports from World Health Organization (WHO). Preventive measures are being taken globally to avoid the rapid spread of virus. In the current study, an in silico approach is carried out as a means of inhibiting the spike protein of the novel coronavirus by flavonoids from natural sources that possess both antiviral and anti-inflammatory properties. The methodology is focused on molecular docking of 10 flavonoid compounds that are docked with the spike protein of SARS-CoV-2, to determine the highest binding affinity at the binding site. Molecular dynamics simulation was carried out with the flavonoid-protein complex showing the highest binding affinity and highest interactions. The flavonoid naringin showed the least binding energy of -9.8 Kcal/mol with the spike protein which was compared with the standard drug, dexamethasone which is being repurposed to treat critically ill patients. MD simulation was carried out on naringin-spike protein complex for their conformational stability in the active site of the novel coronavirus spike protein. The RMSD of the complex appeared to be more stable when compared to that of the protein from 0.2 nm to 0.4 nm. With the aid of this in silico approach further in vitro studies can be carried out on these flavonoids against the novel coronavirus as a means of viral protein inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...