Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 9(12): 3049-3059, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30095254

RESUMEN

Galanin is a neuropeptide widely expressed in the nervous system, but it is also present in non-neuronal locations. In the brain, galanin may function as an inhibitory neurotransmitter. Several studies have shown that galanin is involved in seizure regulation and can modulate epileptic activity in the brain. The overall goal of the study was to establish zebrafish as a model to study the antiepileptic effect of galanin. The goal of this study was achieved by (1) determining neuroanatomical localization of galanin in zebrafish lateral pallium, which is considered to be the zebrafish homologue of the mammalian hippocampus, the brain region essential for initiation of seizures, and (2) testing the anticonvulsant effect of galanin overexpression. Whole mount immunofluorescence staining and pentylenotetrazole (PTZ)-seizure model in larval zebrafish using automated analysis of motor function and qPCR were used in the study. Immunohistochemical staining of zebrafish larvae revealed numerous galanin-IR fibers innervating the subpallium, but only scarce fibers reaching the dorsal parts of telencephalon, including lateral pallium. In three-month old zebrafish, galanin-IR innervation of the telencephalon was similar; however, many more galanin-IR fibers reached the dorsal telencephalon, but in the lateral pallium only scarce galanin-IR fibers were visible. qRT-PCR revealed, as expected, a strong increase in the expression of galanin in the Tg(hsp70l:galn) line after heat shock; however, also without heat shock, the galanin expression was several-fold higher than in the control animals. Galanin overexpression resulted in downregulation of c-fos after PTZ treatment. Behavioral analysis showed that galanin overexpression inhibited locomotor activity in PTZ-treated and control larvae. The obtained results show that galanin overexpression reduced the incidence of seizure-like behavior episodes and their intensity but had no significant effect on their duration. The findings indicate that in addition to antiepileptic action, galanin modulates arousal behavior and demonstrates a sedative effect. The current study showed that galanin overexpression correlated with a potent anticonvulsant effect in the zebrafish PTZ-seizure model.


Asunto(s)
Galanina/genética , Convulsiones/genética , Telencéfalo/metabolismo , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Convulsivantes/toxicidad , Galanina/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Locomoción , Pentilenotetrazol/toxicidad , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
2.
Toxicol Appl Pharmacol ; 341: 16-29, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29317240

RESUMEN

Defects in tryptophan metabolism on the l-kynurenine pathway (KP) are implicated in a number of human diseases, including chronic kidney disease, brain edema or injury, tuberculosis and malaria - as well as cancer, neurodegenerative and autoimmune disorders. However, it is unclear to what extent detrimental effects of exposure to tryptophan metabolites might impact the early development of organism. Thus, this study examined the effects of KP exposure in zebrafish embryos starting at the blastula period (4hpf) and the segmentation stage (24hpf). 24-hour EC50 and LC50 values were determined in 4hpf embryos as: 26.74 and 331.6µM for anthranilic acid (AA), 62.88 and 616.4µM for quinolinic acid (QUIN), and EC50 - 96.10µM for picolinic acid (PA) and LC50 - 400µM in kynurenic acid (KYNA). In addition, treatment with nanomolar concentrations of KYNA (50nM, 48 and 72hpf embryos) caused a dose-dependent increase in heartbeat. The increase was also seen with l-kyn treatment (50µM, 72hpf), which was the opposite of other applied l-kyn metabolites. A significant drop in heartbeat was observed after a 20-min acute exposure to 626µM PA, 594µM XA and 499µM QUIN, and complete recovery was seen only when PA had been removed. Concentrations of KP metabolites reached in people with different pathological conditions did not exert toxicity to zebrafish embryos and seems to be safe for developing embryos and therefore, the risk of developing impairments in pregnancy of women carrying KP-associated pathologies is initially low.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Quinurenina/metabolismo , Triptófano/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Quinurenina/toxicidad , Transducción de Señal/fisiología , Triptófano/toxicidad , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA