Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 13(2)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38247833

RESUMEN

Tissue engineering (TE) techniques offer solutions for tissue regeneration but require large quantities of cells. For microtia patients, TE methods represent a unique opportunity for therapies with low donor-site morbidity and reliance on the surgeon's individual expertise. Microtia-derived chondrocytes and perichondrocytes are considered a valuable cell source for autologous reconstruction of the pinna. The aim of this study was to investigate the suitability of perichondrocytes from microtia patients for autologous reconstruction in comparison to healthy perichondrocytes and microtia chondrocytes. Perichondrocytes were isolated via two different methods: explant culture and enzymatic digestion. The isolated cells were analyzed in vitro for their chondrogenic cell properties. We examined migration activity, colony-forming ability, expression of mesenchymal stem cell markers, and gene expression profile. We found that microtic perichondrocytes exhibit similar chondrogenic properties compared to chondrocytes in vitro. We investigated the behavior in three-dimensional cell cultures (spheroids and scaffold-based 3D cell cultures) and assessed the expression of cartilage-specific proteins via immunohistochemistry, e.g., collagen II, which was detected in all samples. Our results show that perichondrocytes from microtia patients are comparable to healthy perichondrocytes and chondrocytes in terms of chondrogenic cell properties and could therefore be a promising cell source for auricular reconstruction.


Asunto(s)
Microtia Congénita , Células Madre Mesenquimatosas , Humanos , Condrocitos , Condrogénesis , Estado de Salud
2.
Biomedicines ; 11(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37761029

RESUMEN

Microtia is a congenital condition of abnormal development of the outer ear. Tissue engineering of the ear is an alternative treatment option for microtia patients. However, for this approach, the identification of high regenerative cartilage progenitor cells is of vital importance. Raman analysis provides a novel, non-invasive, label-free diagnostic tool to detect distinctive biochemical features of single cells or tissues. Using micro-Raman spectroscopy, we were able to distinguish and characterize the particular molecular fingerprints of differentiated chondrocytes and perichondrocytes and their respective progenitors isolated from healthy individuals and microtia patients. We found that microtia chondrocytes exhibited lower lipid concentrations in comparison to healthy cells, thus indicating the importance of fat storage. Moreover, we suggest that collagen is a useful biomarker for distinguishing between populations obtained from the cartilage and perichondrium because of the higher spectral contributions of collagen in the chondrocytes compared to perichondrocytes from healthy individuals and microtia patients. Our results represent a contribution to the identification of cell markers that may allow the selection of specific cell populations for cartilage tissue engineering. Moreover, the observed differences between microtia and healthy cells are essential for gaining better knowledge of the cause of microtia. It can be useful for designing novel treatment options based on further investigations of the discovered biochemical substrate alterations.

3.
J Tissue Eng ; 13: 20417314221114423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158899

RESUMEN

Nasal septum defects can currently only be reconstructed using autologous cartilage grafts. In this study, we examine the reconstruction of septal cartilage defects in a rabbit model using porcine decellularized nasal septal cartilage (DNSC) functionalized with recombinant platelet-derived growth factor-BB (PDFG-BB). The supportive function of the transplanted DNSC was estimated by the degree of septum deviation and shrinkage using magnetic resonance imaging (MRI). The biocompatibility of the transplanted scaffolds was evaluated by histology according to international standards. A study group with an autologous septal transplant was used as a reference. In situ regeneration of cartilage defects was assessed by histological evaluation 4 and 16 weeks following DNSC transplantation. A study group with non-functionalized DNSC was introduced for estimation of the effects of PDFG-BB functionalization. DNSC scaffolds provided sufficient structural support to the nasal septum, with no significant shrinkage or septal deviations as evaluated by the MRI. Biocompatibility analysis after 4 weeks revealed an increased inflammatory reaction of the surrounding tissue in response to DNSC as compared to the autologous transplants. The inflammatory reaction was, however, significantly attenuated after 16 weeks in the PDGF-BB group whereas only a slight improvement of the biocompatibility score was observed in the untreated group. In situ regeneration of septal cartilage, as evidenced by the degradation of the DNSC matrix and production of neocartilage, was observed in both experimental groups after 16 weeks but was more pronounced in the PDFG-BB group. Overall, DNSC provided structural support to the nasal septum and stimulated in situ regeneration of the cartilage tissue. Furthermore, PDFG-BB augmented the regenerative potential of DNSC and enhanced the healing process, as demonstrated by reduced inflammation after 16 weeks.

4.
Oncol Lett ; 23(6): 177, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35464304

RESUMEN

Epidermal growth factor receptor (EGFR) upregulation is a typical characteristic of head and neck squamous cell carcinoma (HNSCC). However, tyrosine kinase inhibitors have not yet been able to achieve enough therapeutic benefit in clinical trials to justify their use in standard therapy regimens. At present, little is known about the reasons for this treatment failure. In the present study, the HNSCC cell lines UM-SCC-11B and UM-SCC-22B were tested for their response to tyrosine kinase inhibitors (TKI) under 2D and 3D cell culture conditions. Absorption and luciferase-based viability assays were used for this, as well as optical evaluation via fluorescence microscopy. In addition, EGFR and HER3 expression as well as the downstream signalling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK were investigated using western blotting. Cell line UM-SCC-11B revealed a strong resistance to lapatinib under 3D cell culture conditions, while a good response to TKI therapy was observed under 2D cell culture conditions. An associated overexpression of phosphorylated HER3 under 3D cell culture conditions offered a plausible explanation for the altered treatment response. The results of the present study represent an idea of how signalling mechanisms of cancer cells can be changed using different cell culture methods. Overall, 3D cell culture could be an important component in the analysis of resistance mechanisms in cancer therapy.

5.
Tissue Eng Part B Rev ; 28(3): 531-541, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33966486

RESUMEN

The clinical relevance of perichondrium was recognized more than a century ago. In children and adolescents, perichondrium is essential for the formation and growth of the cartilaginous part of craniofacial features and must be considered during reconstructive surgery in the head and neck area. Also in adults, perichondrium must be preserved during surgical intervention for adequate postoperative healing and cartilage maintenance. Furthermore, the regenerative function of perichondrium in the ribs enables the harvesting of the rib cartilage tissue for reconstruction of craniofacial features. With the advancement of tissue engineering, renewed attention has been focused on the perichondrium, because without this crucial tissue, the function of cartilage engineered for craniofacial reconstruction is incomplete and may not be suitable for long-term reconstructive goals. Furthermore, interest in the perichondrium was revived owing to its possible role as a microenvironment containing stem and progenitor cells. Here we will revisit seminal studies on the perichondrium and review the current literature to provide a holistic perspective on the importance of this tissue in the context of regenerative medicine. We will also highlight the functional significance of perichondrium for cartilage tissue engineering. Impact statement All adult cartilage tissues, with the exception of articular and fibrocartilage, are lined by a stratified tissue called the perichondrium. The perichondrium contributes to growth, structural stability, and regeneration and maintenance of the organ, but the cellular mechanisms underlying these processes are not well understood. This review provides a comprehensive summary of past and recent studies on perichondrium from the vantage point of tissue engineering and regenerative medicine. Of particular relevance is the evidence that perichondrium might contain chondrogenic progenitor cells. Cartilage tissue engineering holds great promise for novel treatments of craniofacial defects, and a better understanding of the function and structure of the perichondrium could contribute to improved therapies for head and neck reconstructive surgery and beyond.


Asunto(s)
Cartílago , Ingeniería de Tejidos , Adolescente , Adulto , Niño , Condrogénesis , Humanos , Medicina Regenerativa , Células Madre
6.
J Biomed Mater Res A ; 110(5): 1021-1035, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34967101

RESUMEN

Decellularized extracellular matrices (DECM) are among the most common types of materials used in tissue engineering due to their cell instructive properties, biodegradability, and accessibility. Particularly in cartilage, a natural collagen type II matrix can be a promising means to provide the necessary cues and support for chondrogenic stem and progenitor cells (CSPCs). However, efficient remodeling of the transplanted DECM is largely dependent on the host immune response, with macrophages playing the central role in orchestrating both inflammatory and regenerative processes. Here we assessed the reaction of human primary macrophages to the cartilage DECM. Our findings show that the xenogeneic collagen matrix can elicit a mixed response in human macrophages, whereby the inflammatory response (M1) and the activation of remodeling (M2) type of macrophages are both present. Additionally, we demonstrate the inhibitory effect of macrophage response on the migratory capacity of human CSPCs. We further show that the inflammatory reaction of macrophages to the cartilage DECM, as well as the resulting inhibitory effects on CSPC migration, can be attenuated by interleukin-4 (IL-4). Finally, we demonstrate that IL-4 can effectively bind the matrix, thereby modulating macrophage response by reducing the inflammatory reaction and inducing the M2 phenotype.


Asunto(s)
Matriz Extracelular , Interleucina-4 , Cartílago/fisiología , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-4/metabolismo , Regeneración , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA