Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37894059

RESUMEN

Cracking is an inevitable feature of concrete, typically leading to corrosion of the embedded steel reinforcement and massive deterioration because of the freezing-thawing cycles. Different means have been proposed to increase the serviceability performance of cracked concrete structures. This case study deals with bacteria encapsulated in cementitious materials to "heal" cracks. Such a biological self-healing system requires preserving the bacteria's viability in the cement matrix. Many embedded bacterial spores are damaged during concrete curing, drastically reducing efficiency. This study investigates the viability of commonly used non-ureolytic bacterial spores when immobilized in calcium alginate microcapsules within self-healing cementitious composites. Three Bacillus species were used in this study, i.e., B. pseudofirmus, B. cohnii, and B. halodurans. B. pseudofirmus demonstrated the best mineralization activity; a sufficient number of bacterial spores remained viable after the encapsulation. B. pseudofirmus and B. halodurans spores retained the highest viability after incorporating the microcapsules into the cement paste, while B. halodurans spores retained the highest viability in the mortar. Cracks with a width of about 0.13 mm were filled with bacterial calcium carbonate within 14 to 28 days, depending on the type of bacteria. Larger cracks were not healed entirely. B. pseudofirmus had the highest efficiency, with a healing coefficient of 0.497 after 56 days. This study also revealed the essential role of the cement hydration temperature on bacterial viability. Thus, further studies should optimize the content of bacteria and nutrients in the microcapsule structure.

2.
Materials (Basel) ; 15(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500081

RESUMEN

Biological self-healing concrete (BSHC) offers a sustainable and economical way of increasing the lifespan of structures vulnerable to cracking. In recent decades, an enormous research effort has been dedicated to developing and optimizing the bacterial healing process. Nevertheless, most studies have been carried out under laboratory conditions. To verify the effectiveness and longevity of the embedded healing systems under normal service conditions, field studies on BSHC structures must be performed. In the present study, BSHC beams were designed as a structural part of a prototype footbridge. To select the optimal BSHC mix composition, a series of laboratory tests were also carried out. Laboratory tests have shown that the healing ratio in BSHC elements under rain-simulating healing conditions was several times higher in comparison to control specimens. Based on the laboratory results, the BSHC mix composition was selected and applied for structural bridge beams. To the best of the authors' knowledge, the present study reports the first application of BSHC in a prototype footbridge. The long-term data gathered on the healing process in a humid continental climate zone will allow the benefits of biological self-healing to be quantitatively evaluated and will pave the way for the further optimization of this material.

3.
Materials (Basel) ; 14(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064142

RESUMEN

One of the biggest challenges in the development of a biological self-healing concrete is to ensure the long-term viability of bacteria that are embedded in the concrete. In the present study, a coated expanded clay (EC) is investigated for its potential use as a bacterial carrier in biological concrete. Eight different materials for coatings were selected considering cost, workability and accessibility in the construction industry. Long-term (56 days) viability analysis was conducted with a final evaluation of each coating performance. Our results indicate that healing efficiency in biological concrete specimens is strongly related to viable bacteria present in the healing agent. More viable bacteria-containing specimens exhibited a higher crack closure ratio. Our data suggest that the additional coating of EC particles improves long-term bacterial viability and, consequently, provides efficient crack healing in biological concrete.

4.
Materials (Basel) ; 15(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35009442

RESUMEN

A bond mechanism at the reinforcement-concrete interface is one of the key sources of the comprehensive functioning of reinforced concrete (RC) structures. In order to apprehend the bond mechanism, the study on bond stress and slip relation (henceforth referred as bond-slip) is necessary. On this subject, experimental and numerical investigations were performed on short RC tensile specimens. A double pull-out test with pre-installed electrical strain gauge sensors inside the modified embedded rebar was performed in the experimental part. Numerically, a three dimensional rib scale model was designed and finite element analysis was performed. The compatibility and reliability of the numerical model was verified by comparing its strain result with an experimentally obtained one. Afterwards, based on stress transfer approach, the bond-slip relations were calculated from the extracted strain results. The maximum disparity between experimental and numerical investigation was found as 19.5% in case of strain data and 7% for the bond-slip relation at the highest load level (110 kN). Moreover, the bond-slip curves at different load levels were compared with the bond-slip model established in CEB-fib Model Code 2010 (MC2010). Overall, in the present study, strain monitoring through the experimental tool and finite element modelling have accomplished a broader picture of the bond mechanism at the reinforcement-concrete interface through their bond-slip relationship.

5.
Materials (Basel) ; 13(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155901

RESUMEN

The use of high-strength steel (HSS) is a current trend of the construction industry. Tubular profiles are widely used in various structural applications because of their high stiffness-to-weight ratio, exceptional resistance to torsion, and aesthetic appearance. However, the increase of the strength for the same elastic modulus of the material and geometry of tubular profiles is often not proportional to the rise of the load-bearing capacity of the structural element. The obtained experimental results support the above inference. The study was based on the flexural test results of two groups of HSS and normal-strength steel (NSS) tubular specimens with a 100 × 100 × 4 mm (height × width × thickness) cross-section. Numerical (finite element) simulation results demonstrated that the shape of the cross-section influenced the efficiency of utilisation of HSS. The relationship between the relative increase of the load-bearing capacity of the beam specimen and the corresponding change of the steel strength determined the utilisation efficiency.

6.
Sensors (Basel) ; 19(1)2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30621118

RESUMEN

Experimental and numerical studies have been carried out on reinforced concrete (RC) short tensile specimens. Double pull-out tests employed rectangular RC elements of a length determined not to yield any additional primary cracks. Tests were carried out with tensor strain gauges installed within a specially modified reinforcement bar and, alternatively, with fibre Bragg grating based optical sensors. The aim of this paper is to analyse the different experimental setups regarding obtaining more accurate and reliable reinforcement strain distribution data. Furthermore, reinforcement strain profiles obtained numerically using the stress transfer approach and the Model Code 2010 provided bond-slip model were compared against the experimental results. Accurate knowledge of the relation between the concrete and the embedded reinforcement is necessary and lacking to this day for less scattered and reliable prediction of cracking behaviour of RC elements. The presented experimental strain values enable future research on bond interaction. In addition, few double pull-out test results are published when compared to ordinary bond tests of single pull-out tests with embedded reinforcement. The authors summarize the comparison with observations on experimental setups and discuss the findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA