Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8: 14456, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28218243

RESUMEN

Anxiety is controlled by multiple neuronal circuits that share robust and reciprocal connections with the bed nucleus of the stria terminalis (BNST), a key structure controlling negative emotional states. However, it remains unknown how the BNST integrates diverse inputs to modulate anxiety. In this study, we evaluated the contribution of infralimbic cortex (ILCx) and ventral subiculum/CA1 (vSUB/CA1) inputs in regulating BNST activity at the single-cell level. Using trans-synaptic tracing from single-electroporated neurons and in vivo recordings, we show that vSUB/CA1 stimulation promotes opposite forms of in vivo plasticity at the single-cell level in the anteromedial part of the BNST (amBNST). We find that an NMDA-receptor-dependent homosynaptic long-term potentiation is instrumental for anxiolysis. These findings suggest that the vSUB/CA1-driven LTP in the amBNST is involved in eliciting an appropriate response to anxiogenic context and dysfunction of this compensatory mechanism may underlie pathologic anxiety states.


Asunto(s)
Ansiedad/fisiopatología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleos Septales/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Ansiedad/metabolismo , Ansiedad/prevención & control , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Masculino , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Núcleos Septales/citología , Núcleos Septales/metabolismo
2.
J Neurosci ; 36(42): 10759-10768, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27798131

RESUMEN

Potentiation of excitatory inputs onto dopamine neurons of the ventral tegmental area (VTA) induced by cocaine exposure allows remodeling of the mesocorticolimbic circuitry, which ultimately drives drug-adaptive behavior. This potentiation is mediated by changes in NMDAR and AMPAR subunit composition. It remains unknown how this synaptic plasticity affects the activity of dopamine neurons. Here, using rodents, we demonstrate that a single cocaine injection increases the firing rate and bursting activity of VTA dopamine neurons, and that these increases persist for 7 d. This enhanced activity depends on the insertion of low-conductance, Ca2+-impermeable NMDARs that contain GluN3A. Since such receptors are not capable of activating small-conductance potassium channels, the intrinsic excitability of VTA dopamine neurons increases. Activation of group I mGluRs rescues synaptic plasticity and restores small-conductance calcium-dependent potassium channel function, normalizing the firing activity of dopamine neurons. Our study characterizes a mechanism linking drug-evoked synaptic plasticity to neural activity, revealing novel targets for therapeutic interventions. SIGNIFICANCE STATEMENT: We show that cocaine-evoked synaptic changes onto ventral tegmental area (VTA) dopamine (DA) neurons leads to long-lasting increases in their burst firing. This increase is due to impaired function of Ca2+-activated small-conductance calcium-dependent potassium (SK) channels; SK channels regulate firing of VTA DA neurons, but this regulation was absent after cocaine. Cocaine exposure drives the insertion of GluN3A-containing NMDARs onto VTA DA neurons. These receptors are Ca2+-impermeable, and thus SK channels are not efficiently activated by synaptic activity. In GluN3A knock-out mice, cocaine did not alter SK channel function or VTA DA neuron firing. This study directly links synaptic changes to increased intrinsic excitability of VTA DA neurons after cocaine, and explains how acute cocaine induces long-lasting remodeling of the mesolimbic DA system.


Asunto(s)
Calcio/metabolismo , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Masculino , Glicoproteínas de Membrana/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Ratones Noqueados , Plasticidad Neuronal , Técnicas de Placa-Clamp , Canales de Potasio Calcio-Activados/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Área Tegmental Ventral/citología
3.
Cell Rep ; 13(10): 2287-96, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26628379

RESUMEN

The ventral subiculum (vSUB) plays a key role in addiction, and identifying the neuronal circuits and synaptic mechanisms by which vSUB alters the excitability of dopamine neurons is a necessary step to understand the motor changes induced by cocaine. Here, we report that high-frequency stimulation of the vSUB (HFSvSUB) over-activates ventral tegmental area (VTA) dopamine neurons in vivo and triggers long-lasting modifications of synaptic transmission measured ex vivo. This potentiation is caused by NMDA-dependent plastic changes occurring in the bed nucleus of the stria terminalis (BNST). Finally, we report that the modification of the BNST-VTA neural circuits induced by HFSvSUB potentiates locomotor activity induced by a sub-threshold dose of cocaine. Our findings unravel a neuronal circuit encoding behavioral effects of cocaine in rats and highlight the importance of adaptive modifications in the BNST, a structure that influences motivated behavior as well as maladaptive behaviors associated with addiction.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Trastornos Relacionados con Cocaína/fisiopatología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/fisiología , Estimulación Eléctrica , Hipocampo/fisiología , Inmunohistoquímica , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
4.
Ann Neurol ; 76(3): 428-42, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25074818

RESUMEN

OBJECTIVE: Subcortical band heterotopia (SBH) is a cortical malformation formed when neocortical neurons prematurely stop their migration in the white matter, forming a heterotopic band below the normotopic cortex, and is generally associated with intractable epilepsy. Although it is clear that the band heterotopia and the overlying cortex both contribute to creating an abnormal circuit prone to generate epileptic discharges, it is less understood which part of this circuitry is the most critical. Here, we sought to identify the origin of epileptiform activity in a targeted genetic model of SBH in rats. METHODS: Rats with SBH (Dcx-KD rats) were generated by knocking down the Dcx gene using shRNA vectors transfected into neocortical progenitors of rat embryos. Origin, spatial extent, and laminar profile of bicuculline-induced interictal-like activity on neocortical slices were analyzed by using extracellular recordings from 60-channel microelectrode arrays. Susceptibility to pentylenetetrazole-induced seizures was assessed by electrocorticography in head-restrained nonanesthetized rats. RESULTS: We show that the band heterotopia does not constitute a primary origin for interictal-like epileptiform activity in vitro and is dispensable for generating induced seizures in vivo. Furthermore, we report that most interictal-like discharges originating in the overlying cortex secondarily propagate to the band heterotopia. Importantly, we found that in vivo suppression of neuronal excitability in SBH does not alter the higher propensity of Dcx-KD rats to display seizures. INTERPRETATION: These results suggest a major role of the normotopic cortex over the band heterotopia in generating interictal epileptiform activity and seizures in brains with SBH.


Asunto(s)
Corteza Cerebral/fisiopatología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/fisiopatología , Epilepsia/etiología , Epilepsia/fisiopatología , Neocórtex/fisiopatología , Animales , Bicuculina/farmacología , Corteza Cerebral/efectos de los fármacos , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/complicaciones , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/patología , Convulsivantes/farmacología , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Electroencefalografía , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Epilepsia/inducido químicamente , Técnicas de Silenciamiento del Gen , Proteínas Asociadas a Microtúbulos/genética , Neocórtex/efectos de los fármacos , Red Nerviosa/anomalías , Red Nerviosa/fisiopatología , Neuropéptidos/genética , Pentilenotetrazol/farmacología , Ratas , Ratas Transgénicas , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/fisiopatología
5.
Proc Natl Acad Sci U S A ; 108(39): 16446-50, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21930931

RESUMEN

Morphine is a highly potent analgesic with high addictive potential in specific contexts. Although dopamine neurons of the ventral tegmental area (VTA) are widely believed to play an essential role in the development of drug addiction, neuronal circuits underlying morphine action on dopamine neurons have not been fully elucidated. Here we combined in vivo electrophysiology, tract-tracing experiments, and targeted neuronal inactivation to dissect a neural circuit for acute morphine action on dopamine neurons in rats. We found that in vivo, morphine targets the GABAergic tail of the VTA, also called the rostromedial tegmental nucleus, to increase the firing of dopamine neurons through the activation of VTA µ opioid receptors expressed on tail of the VTA/rostromedial tegmental nucleus efferents. Our data also reveal that in the absence of VTA glutamatergic tone, there is no morphine-induced activation of dopamine neurons. These results define the anatomical organization and functional role of a neural circuit for acute morphine action on dopamine neurons.


Asunto(s)
Dopamina/metabolismo , Morfina/farmacología , Neuronas/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Animales , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Área Tegmental Ventral/citología , Área Tegmental Ventral/metabolismo , Ácido gamma-Aminobutírico/metabolismo
6.
Prog Neuropsychopharmacol Biol Psychiatry ; 33(8): 1336-46, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19616054

RESUMEN

Projections from neurons of the bed nucleus of the stria terminalis (BST) to the ventral tegmental area (VTA) are crucial to behaviors related to reward and motivation. Over the past few years, we have undertaken a series of studies to understand: 1) how excitatory inputs regulate in vivo excitable properties of BST neurons, and 2) how BST inputs in turn modulate neuronal activity of dopamine neurons in VTA. Using in vivo extracellular recording techniques in anesthetized rats and tract-tracing approaches, we have demonstrated that inputs from the infralimbic cortex and the ventral subiculum exert a strong excitatory influence on BST neurons projecting to the VTA. Thus, the BST is uniquely positioned to receive emotional and learning-associated informations and to integrate these into the reward/motivation circuitry. We will discuss how changes in the activity of BST neurons projecting to the VTA could participate in the development or exacerbation of psychiatric conditions such as drug addiction.


Asunto(s)
Dopamina/metabolismo , Neuronas/fisiología , Núcleos Septales/fisiología , Área Tegmental Ventral/citología , Potenciales de Acción/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Biofisica , Toxina del Cólera/metabolismo , Estimulación Eléctrica/métodos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Hipocampo/citología , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Corteza Prefrontal/citología , Ratas , Recompensa , Núcleos Septales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...