Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1190133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333655

RESUMEN

The overall pattern of the SARS-CoV-2 pandemic so far has been a series of waves; surges in new cases followed by declines. The appearance of novel mutations and variants underlie the rises in infections, making surveillance of SARS-CoV-2 mutations and prediction of variant evolution of utmost importance. In this study, we sequenced 320 SARS-CoV-2 viral genomes isolated from patients from the outpatient COVID-19 clinic in the Children's Cancer Hospital Egypt 57357 (CCHE 57357) and the Egypt Center for Research and Regenerative Medicine (ECRRM). The samples were collected between March and December 2021, covering the third and fourth waves of the pandemic. The third wave was found to be dominated by Nextclade 20D in our samples, with a small number of alpha variants. The delta variant was found to dominate the fourth wave samples, with the appearance of omicron variants late in 2021. Phylogenetic analysis reveals that the omicron variants are closest genetically to early pandemic variants. Mutation analysis shows SNPs, stop codon mutation gain, and deletion/insertion mutations, with distinct patterns of mutations governed by Nextclade or WHO variant. Finally, we observed a large number of highly correlated mutations, and some negatively correlated mutations, and identified a general inclination toward mutations that lead to enhanced thermodynamic stability of the spike protein. Overall, this study contributes genetic and phylogenetic data, as well as provides insights into SARS-CoV-2 viral evolution that may eventually help in the prediction of evolving mutations for better vaccine development and drug targets.

2.
Sci Rep ; 12(1): 14511, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008511

RESUMEN

A serious global public health emergency emerged late November 2019 in Wuhan City, China, by a new highly pathogenic virus, SARS-CoV-2. The virus evolution spread has been tracked by three developing databases: GISAID, Nextstrain and PANGO to understand its circulating variants. In this study, 110 diagnosed positive COVID-19 patient's samples, were collected from Kasr Al-Aini Hospital and the Children Cancer Hospital Egypt 57357 between May 2020 and January 2021, with clinical severity ranging from mild to severe. The viral genomes were sequenced by next generation sequencing, and phylogenetic analysis was performed to understand viral transmission dynamics. According to Nextstrain clades, most of our sequenced samples belonged to clades 20A and 20D, which in addition to clade 20B were present from the beginning of sample collection in May 2020. Clades 19A and 19B, on the other hand, appeared in the mid and late 2020 respectively, followed by the disappearance of clade 20B at the end of 2020. We identified a relatively high prevalence of the D614G spike protein variant and novel patterns of mutations associated together and with different clades. We also identified four mutations, spike H49Y, ORF3a H78Y, ORF8 E64stop and nucleocapsid E378V, associated with higher disease severity. Altogether, our study contributes genetic, phylogenetic, and clinical correlation data about the spread of the SARS-CoV-2 pandemic in Egypt.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/genética , Niño , Egipto/epidemiología , Genoma Viral , Humanos , Mutación , Pandemias , Filogenia , SARS-CoV-2/genética
3.
mSphere ; 6(6): e0072521, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34787450

RESUMEN

Infection by multidrug-resistant (MDR) Acinetobacter baumannii is one of the major causes of hospital-acquired infections worldwide. The ability of A. baumannii to survive in adverse conditions as well as its extensive antimicrobial resistance make it one of the most difficult to treat pathogens associated with high mortality rates. The aim of this study was to investigate MDR A. baumannii that has spread among pediatric cancer patients in the Children's Cancer Hospital Egypt 57357. Whole-genome sequencing was used to characterize 31 MDR A. baumannii clinical isolates. Phenotypically, the isolates were MDR, with four isolates showing resistance to the last-resort antibiotic colistin. Multilocus sequence typing showed the presence of eight clonal groups, two of which were previously reported to cause outbreaks in Egypt, and one novel sequence type (ST), Oxf-ST2246. Identification of the circulating plasmids showed the presence of two plasmid lineages in the isolates, strongly governed by sequence type. A large number of antimicrobial genes with a range of resistance mechanisms were detected in the isolates, including ß-lactamases and antibiotic efflux pumps. Analysis of insertion sequences (ISs) revealed the presence of ISAba1 and ISAba125 in all the samples, which amplify ß-lactamase expression, causing extensive carbapenem resistance. Mutation analysis was used to decipher underlying mutations responsible for colistin resistance and revealed novel mutations in several outer membrane proteins, in addition to previously reported mutations in pmrB. Altogether, understanding the transmissibility of A. baumannii as well as its resistance and virulence mechanisms will help develop novel treatment options for better management of hospital-acquired infections. IMPORTANCE Acinetobacter baumannii represents a major health threat, in particular among immunocompromised cancer patients. The rise in carbapenem-resistant A. baumannii, and the development of resistance to the last-resort antimicrobial agent colistin, complicates the management of A. baumannii outbreaks and increases mortality rates. Here, we investigate 31 multidrug resistant A. baumannii isolates from pediatric cancer patients in Children's Cancer Hospital Egypt (CCHE) 57357 via whole-genome sequencing. Multilocus sequence typing (MLST) showed the presence of eight clonal groups including a novel sequence type. In silico detection of antimicrobial-resistant genes and virulence factors revealed a strong correlation between certain virulence genes and mortality as well as several point mutations in outer membrane proteins contributing to colistin resistance. Detection of CRISPR/Cas sequences in the majority of the samples was strongly correlated with the presence of prophage sequences and associated with failure of bacteriophage therapy. Altogether, understanding the genetic makeup of circulating A. baumannii is essential for better management of outbreaks.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , Tipificación de Secuencias Multilocus , Infecciones por Acinetobacter/epidemiología , Infecciones por Acinetobacter/transmisión , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/patogenicidad , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Instituciones Oncológicas , Carbapenémicos/farmacología , Colistina/farmacología , Infección Hospitalaria , Egipto , Hospitales Pediátricos , Humanos , Pruebas de Sensibilidad Microbiana , Secuenciación Completa del Genoma , beta-Lactamasas/genética
4.
DNA Repair (Amst) ; 97: 103019, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33202365

RESUMEN

DNA double-strand breaks (DSBs) constitute one of the most cytotoxic forms of DNA damage and pose a significant threat to cell viability, survival, and homeostasis. DSBs have the potential to promote aneuploidy, cell death and potentially deleterious mutations that promote tumorigenesis. Homologous recombination (HR) is one of the main DSB repair pathways and while being essential for cell survival under genotoxic stress, it requires proper regulation to avoid chromosome rearrangements. Here, we characterize the Saccharomyces cerevisiae E3 ubiquitin ligase/putative helicase Irc20 as a regulator of HR. Using purified Irc20, we show that it can hydrolyze ATP in the presence and absence of DNA, but does not increase access to DNA within a nucleosome. In addition, we show that both the ATPase and ubiquitin ligase activities of Irc20 are required for suppressing the spontaneous formation of recombination foci. Finally, we demonstrate a role for Irc20 in promoting Rad51 chromatin association and the removal of Rad52 recombinase from chromatin, thus facilitating subsequent HR steps and directing recombination to more error-free modes.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , ADN de Hongos/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Saccharomyces cerevisiae/genética
5.
Front Mol Biosci ; 7: 221, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330615

RESUMEN

The endogenous yeast 2-µm plasmid while innocuous to the host, needs to be properly regulated to avoid a toxic increase in copy number. The plasmid copy number control system is under the control of the plasmid encoded recombinase, Flp1. In case of a drop in 2-µm plasmid levels due to rare plasmid mis-segregation events, the Flp1 recombinase together with the cell's homologous recombination machinery, produce multiple copies of the 2-µm plasmid that are spooled during DNA replication. The 2-µm plasmid copy number is tightly regulated by controlled expression of Flp1 as well as its ubiquitin and SUMO modification. Here, we identify a novel regulator of the 2-µm plasmid, the ATPase, ubiquitin ligase, Irc20. Irc20 was initially identified as a homologous recombination regulator, and here we uncover a new role for Irc20 in maintaining the 2-µm plasmid copy number and segregation through regulating Flp1 protein levels in the cell.

6.
DNA Repair (Amst) ; 51: 2-13, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28189416

RESUMEN

Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN de Hongos/metabolismo , Estrés Oxidativo , Saccharomyces cerevisiae/genética , Núcleo Celular/genética , Mitocondrias/genética
7.
Nucleic Acids Res ; 45(5): 2242-2261, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28115630

RESUMEN

The genome of the cell is often exposed to DNA damaging agents and therefore requires an intricate well-regulated DNA damage response (DDR) to overcome its deleterious effects. The DDR needs proper regulation for its timely activation, repression, as well as appropriate choice of repair pathway. Studies in Saccharomyces cerevisiae have advanced our understanding of the DNA damage response, as well as the mechanisms the cell employs to maintain genome stability and how these mechanisms are regulated. Eukaryotic cells utilize post-translational modifications as a means for fine-tuning protein functions. Ubiquitylation and SUMOylation involve the attachment of small protein molecules onto proteins to modulate function or protein-protein interactions. SUMO in particular, was shown to act as a molecular glue when DNA damage occurs, facilitating the assembly of large protein complexes in repair foci. In other instances, SUMOylation alters a protein's biochemical activities, and interactions. SUMO-targeted ubiquitin ligases (STUbLs) are enzymes that target SUMOylated proteins for ubiquitylation and subsequent degradation, providing a function for the SUMO modification in the regulation and disassembly of repair complexes. Here, we discuss the major contributions of SUMO and STUbLs in the regulation of DNA damage repair pathways as well as in the maintenance of critical regions of the genome, namely rDNA regions, telomeres and the 2 µm circle in budding yeast.


Asunto(s)
Genoma Fúngico , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Daño del ADN , Reparación del ADN , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...