Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(33): 18329-18339, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37608781

RESUMEN

We have approached the synthesis of colloidal InAs nanocrystals (NCs) using amino-As and ligands that are different from the commonly employed oleylamine (OA). We found that carboxylic and phosphonic acids led only to oxides, whereas tri-n-octylphosphine, dioctylamine, or trioctylamine (TOA), when employed as the sole ligands, yielded InAs NCs with irregular sizes and a broad size distribution. Instead, various combinations of TOA and OA delivered InAs NCs with good control over the size distribution, and the TOA:OA volume ratio of 4:1 generated InAs tetrapods with arm length of 5-6 nm. Contrary to tetrapods of II-VI materials, which have a zinc-blende core and wurtzite arms, these NCs are entirely zinc-blende, with arms growing along the ⟨111⟩ directions. They feature a narrow excitonic peak at ∼950 nm in absorption and a weak photoluminescence emission at 1050 nm. Our calculations indicated that the bandgap of the InAs tetrapods is mainly governed by the size of their core and not by their arm lengths when these are longer than ∼3 nm. Nuclear magnetic resonance analyses revealed that InAs tetrapods are mostly passivated by OA with only a minor fraction of TOA. Molecular dynamics simulations showed that OA strongly binds to the (111) facets whereas TOA weakly binds to the edges and corners of the NCs and their combined use (at high TOA:OA volume ratios) promotes growth along the ⟨111⟩ directions, eventually forming tetrapods. Our work highlights the use of mixtures of ligands as a means of improving control over InAs NCs size and size distribution.

2.
ACS Energy Lett ; 6(8): 2844-2853, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34423129

RESUMEN

We report a one-step synthesis of halide perovskite nanocrystals embedded in amphiphilic polymer (poly(acrylic acid)-block-poly(styrene), PAA-b-PS) micelles, based on injecting a dimethylformamide solution of PAA-b-PS, PbBr2, ABr (A = Cs, formamidinium, or both) and "additive" molecules in toluene. These bifunctional or trifunctional short chain organic molecules improve the nanocrystal-polymer compatibility, increasing the nanocrystal stability against polar solvents and high flux irradiation (the nanocrystals retain almost 80% of their photoluminescence after 1 h of 3.2 w/cm2 irradiation). If the nanocrystals are suspended in toluene, the coil state of the polymer allows the nanocrystals to undergo halide exchange, enabling emission color tunability. If the nanocrystals are suspended in methanol, or dried as powders, the polymer is in the globule state, and they are inert to halide exchange. By mixing three primary colors we could prepare stable, multicolor emissive samples (for example, white emitting powders) and a UV-to-white color converting layer for light-emitting diodes entirely made of perovskite nanocrystals.

3.
Nanotechnology ; 29(34): 345605, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-29846177

RESUMEN

Herein, we demonstrate that the structural and optical control of InP-based quantum dots (QDs) can lead to high-performance light-emitting diodes (LEDs). Zinc sulphide (ZnS) shells passivate the InP QD core and increase the quantum yield in green-emitting QDs by 13-fold and red-emitting QDs by 8-fold. The optimised QDs are integrated in the liquid state to eliminate aggregation-induced emission quenching and we fabricated white LEDs with a warm, neutral and cool-white appearance by the down-conversion mechanism. The QD-functionalized white LEDs achieve luminous efficiency (LE) up to 14.7 lm W-1 and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell QDs enable 23-fold enhancement in LE of white LEDs compared to ones containing only QDs of InP core.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...