Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Malar J ; 15(1): 354, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27439360

RESUMEN

BACKGROUND: Anopheles arabiensis is a dominant vector of malaria in sub-Saharan Africa, which feeds indoors and outdoors on human and other vertebrate hosts, making it a difficult species to control with existing control methods. Novel methods that reduce human-vector interactions are, therefore, required to improve the impact of vector control programmes. Investigating the mechanisms underlying the host discrimination process in An. arabiensis could provide valuable knowledge leading to the development of novel control technologies. In this study, a host census and blood meal analysis were conducted to determine the host selection behaviour of An. arabiensis. Since mosquitoes select and discriminate among hosts primarily using olfaction, the volatile headspace of the preferred non-human host and non-host species, were collected. Using combined gas chromatography and electroantennographic detection analysis followed by combined gas chromatography and mass spectrometry, the bioactive compounds in the headspace collections were identified. The efficiency of the identified non-host compounds to repel host-seeking malaria mosquitoes was tested under field conditions. RESULTS: The host census and blood meal analyses demonstrated that An. arabiensis strongly prefers human blood when host seeking indoors, while it randomly feeds on cattle, goats and sheep when found outdoors. However, An. arabiensis avoids chickens despite their relatively high abundance, indicating that chickens are a non-host species for this vector. Eleven bioactive compounds were found in the headspace of the non-host species. Six of these were species-specific, out of which four were identified using combined gas chromatography and mass spectrometry. When tested in the field, the chicken-specific compounds, isobutyl butyrate, naphthalene, hexadecane and trans-limonene oxide, and the generic host compounds, limonene, cis-limonene oxide and ß-myrcene, significantly reduced trap catches within the house compared to a negative control. A significant reduction in trap catch was also observed when suspending a caged chicken next to the trap. CONCLUSIONS: Non-host volatiles repel host-seeking An. arabiensis and thus play a significant role in host discrimination. As such, this study demonstrates that non-host volatiles can provide protection to humans at risk of mosquito-vectored diseases in combination with established control programmes.


Asunto(s)
Pollos , Culicidae/efectos de los fármacos , Repelentes de Insectos/farmacología , Insectos Vectores/efectos de los fármacos , Compuestos Orgánicos Volátiles/farmacología , Animales , Culicidae/fisiología , Conducta Alimentaria/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Repelentes de Insectos/aislamiento & purificación , Insectos Vectores/fisiología , Compuestos Orgánicos Volátiles/aislamiento & purificación
2.
Malar J ; 12: 350, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24083353

RESUMEN

BACKGROUND: Development strategies in Ethiopia have largely focused on the expansion of irrigated agriculture in the last decade to reduce poverty and promote economic growth. However, such irrigation schemes can worsen the socio-economic state by aggravating the problem of mosquito-borne diseases. In this study, the effect of agro-ecosystem practices on malaria prevalence and the risk of malaria transmission by the primary vector mosquito, Anopheles arabiensis, in Ethiopia were investigated. METHODS: In three villages in western Ethiopia practising large-scale sugarcane irrigation, traditional smallholder irrigation and non-irrigated farming, cross-sectional parasitological surveys were conducted during the short rains, after the long rains and during the dry season. Entomological surveys were undertaken monthly (February 2010-January 2011) in each village using light traps, pyrethrum spray collections and artificial pit shelters. RESULTS: Malaria prevalence and the risk of transmission by An. arabiensis assessed by the average human biting rate, mean sporozoite rate and estimated annual entomological inoculation rate were significantly higher in the irrigated sugarcane agro-ecosystem compared to the traditionally irrigated and non-irrigated agro-ecosystems. The average human biting rate was significantly elevated by two-fold, while the mean sporozoite rate was 2.5-fold higher, and the annual entomological inoculation rate was 4.6 to 5.7-fold higher in the irrigated sugarcane compared to the traditional and non-irrigated agro-ecosystems. Active irrigation clearly affected malaria prevalence by increasing the abundance of host seeking Anopheles mosquitoes year-round and thus increasing the risk of infective bites. The year-round presence of sporozoite-infected vectors due to irrigation practices was found to strengthen the coupling between rainfall and risk of malaria transmission, both on- and off-season. CONCLUSION: This study demonstrates the negative impact of large-scale irrigation expansion on malaria transmission by increasing the abundance of mosquito vectors and indicates the need for effective vector monitoring and control strategies in the implementation of irrigation projects.


Asunto(s)
Riego Agrícola/métodos , Anopheles/crecimiento & desarrollo , Ecosistema , Insectos Vectores , Malaria/epidemiología , Animales , Etiopía/epidemiología , Humanos , Control de Mosquitos/métodos , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...