Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Genome Biol Evol ; 16(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38776329

RESUMEN

We have sequenced, assembled, and analyzed the nuclear and mitochondrial genomes and transcriptomes of Potamopyrgus estuarinus and Potamopyrgus kaitunuparaoa, two prosobranch snail species native to New Zealand that together span the continuum from estuary to freshwater. These two species are the closest known relatives of the freshwater species Potamopyrgus antipodarum-a model for studying the evolution of sex, host-parasite coevolution, and biological invasiveness-and thus provide key evolutionary context for understanding its unusual biology. The P. estuarinus and P. kaitunuparaoa genomes are very similar in size and overall gene content. Comparative analyses of genome content indicate that these two species harbor a near-identical set of genes involved in meiosis and sperm functions, including seven genes with meiosis-specific functions. These results are consistent with obligate sexual reproduction in these two species and provide a framework for future analyses of P. antipodarum-a species comprising both obligately sexual and obligately asexual lineages, each separately derived from a sexual ancestor. Genome-wide multigene phylogenetic analyses indicate that P. kaitunuparaoa is likely the closest relative to P. antipodarum. We nevertheless show that there has been considerable introgression between P. estuarinus and P. kaitunuparaoa. That introgression does not extend to the mitochondrial genome, which appears to serve as a barrier to hybridization between P. estuarinus and P. kaitunuparaoa. Nuclear-encoded genes whose products function in joint mitochondrial-nuclear enzyme complexes exhibit similar patterns of nonintrogression, indicating that incompatibilities between the mitochondrial and the nuclear genome may have prevented more extensive gene flow between these two species.


Asunto(s)
Filogenia , Caracoles , Animales , Caracoles/genética , Nueva Zelanda , Introgresión Genética , Evolución Molecular , Genoma Mitocondrial , Genoma
2.
Mol Biol Evol ; 38(9): 3581-3592, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33885820

RESUMEN

How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits-mode of genomic inheritance-influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S-5.8S-28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA-histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction-with potential functional consequences related to the loss of sexual reproduction.


Asunto(s)
Genoma , Histonas , Animales , Genómica , Histonas/genética , Humanos , Reproducción Asexuada/genética , Caracoles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...