Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0204223, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615438

RESUMEN

Epstein-Barr virus (EBV) DNA may influence the development of autoimmune diseases by increasing the production of proinflammatory cytokines. Such cytokines have been associated with inducing the dysbiosis of colonic microbiota, which, in turn, is a risk factor for autoimmune diseases such as rheumatoid arthritis (RA). Therefore, we investigated the role that EBV DNA may play in modulating the intestinal microbiota and consequent exacerbation of arthritis in a mouse model. Mice were treated with collagen (arthritis-inducing agent), EBV DNA and collagen, EBV DNA, or water. Fecal samples were collected from arthritic and control mice, and 16S rRNA sequencing was performed to determine the effect of EBV DNA on the composition of colonic microbiota. EBV DNA causes a change in the alpha diversity of the microbiota resulting in an increased Chao1 microbial richness and decreased Shannon diversity index in the RA mouse model. In addition, the abundance of particular genera/genus clusters was significantly altered among the various groups, with the EBV DNA-exacerbated arthritic group having the highest number of altered genera/genus cluster abundances. This group also had the highest number of cells co-expressing IL-17A, FOXP3, and IFNγ in the colons. Antimicrobial-cleared mice transplanted with fecal samples from EBV DNA-exacerbated arthritic mice showed a higher incidence and enhanced severity of RA compared to those transplanted with fecal samples from water or collagen-treated mice. IMPORTANCE Epstein-Barr virus (EBV) DNA alters the composition and diversity of the gut microbiota in a rheumatoid arthritis (RA) mouse model. These induced changes are associated with enhanced severity of symptoms. This better understanding of the various factors involved in the development of RA will possibly help in creating individualized treatments for RA patients including target mediators triggered by viral DNA. Given that a large swathe of the population harbors EBV, a significant proportion of subjects with arthritis may benefit from possible approaches that target EBV or mediators triggered by this virus.

2.
Front Immunol ; 12: 672752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040613

RESUMEN

Objective: We recently demonstrated that EBV DNA is correlated with proinflammatory responses in mice and in rheumatoid arthritis (RA) patients; hence, we utilized an RA mouse model to examine whether EBV DNA enhances the risk and severity of arthritis and to assess its immunomodulatory effects. Methods: C57BL/6J mice were treated with collagen (arthritis-inducing agent), EBV DNA 6 days before collagen, EBV DNA 15 days after collagen, Staphylococcus epidermidis DNA 6 days before collagen, EBV DNA alone, or water. Mice were then monitored for clinical signs and affected joints/footpads were histologically analysed. The relative concentration of IgG anti- chicken collagen antibodies and serum cytokine levels of IL-17A and IFNϒ were determined by ELISA. The number of cells co-expressing IL-17A and IFNϒ in joint histological sections was determined by immunofluorescence. Results: The incidence of arthritis was significantly higher in mice that received EBV DNA prior to collagen compared to mice that only received collagen. Similarly, increased clinical scores, histological scores and paw thicknesses with a decreased gripping strength were observed in groups treated with EBV DNA and collagen. The relative concentration of IgG anti-chicken collagen antibodies was significantly increased in the group that received EBV DNA 6 days prior to collagen in comparison to the collagen receiving group. On the other hand, the highest number of cells co-expressing IFNϒ and IL-17A was observed in joints from mice that received both collagen and EBV DNA. Conclusion: EBV DNA increases the incidence and severity of arthritis in a RA mouse model. Targeting mediators triggered by viral DNA may hence be a potential therapeutic avenue.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , ADN Viral/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Animales , Artritis Experimental/patología , Artritis Experimental/virología , Artritis Reumatoide/patología , Artritis Reumatoide/virología , Infecciones por Virus de Epstein-Barr/complicaciones , Femenino , Herpesvirus Humano 4 , Incidencia , Ratones , Ratones Endogámicos C57BL
3.
Front Oncol ; 10: 839, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32596146

RESUMEN

Background: Melanoma is a malignancy with increasing incidence that underlies most skin cancer-related deaths. Advanced melanoma patients still have poor prognosis despite recently developed immunotherapies. This study devises a triple immunotherapy to treat melanoma in a mouse model. The combination includes anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) antibodies, Monophosphoryl-lipid-A (MPLA), and an Indolamine-Dioxygenase-1 (IDO1) inhibitor. The aim of the study is, first, to rule out any major toxic effects related to this therapy and, second, to assess its antitumor effects. Methods: Cancer-free C57BL/6 mice were randomized into control groups and groups receiving single, dual, or triple therapies of the defined treatments. Clinical signs, weight gain, and histological sections from their main organs were assessed. Then, melanoma-bearing mice were segregated into similar groups, monitored for survival, and their tumor size was measured repeatedly. Finally, flow cytometry was used to analyze immune cell populations in the tumor masses including CD4+, CD8+, and regulatory T cells in addition to natural killer cells. Results: No adverse effects were detected in any of the treated groups. Survival analysis indicated that the groups receiving dual or triple therapies had prolonged survival compared to the controls. However, the group receiving triple therapy was the only group to show statistically significant increase in survival compared to the controls. Tumor size progression paralleled the survival outcome. The group receiving the triple therapy showed statistically significant smaller tumor sizes compared to all the other groups throughout the whole monitoring period. Flow cytometry used to analyze immune cell populations in the tumor mass indicated that the triple immune therapy was capable of significantly enhancing the natural killer cell counts as well as the CD3+CD4+/Treg and CD3+CD8+/Treg ratios possibly enhancing the anti-tumorigenic environment. Conclusions: Generated data rule out any major adverse events pertaining to the triple immunotherapy and reveal its enhanced effectiveness in thwarting melanoma progression over all other tested treatments.

4.
J Cancer Res Ther ; 13(6): 956-960, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29237958

RESUMEN

OBJECTIVE: The antitumor effect of ciprofloxacin has been widely assessed in-vitro, and positive results have been reported. The aim of this study was to investigate the influence of ciprofloxacin treatment on the growth of B16F10 melanoma cells both in-vitro and in-vivo. MATERIALS AND METHODS: Groups of C57BL/6 female mice challenged with B16F10 melanoma cells were kept untreated or were treated with sterile water, intraperitoneal ciprofloxacin, or ciprofloxacin through drinking water for 10 days. The serum levels of vascular endothelial growth factor (VEGF) were measured by ELISA 1 and 3 h after the last dose of ciprofloxacin. Mice were monitored for an additional 10 days for survival assessment. Moreover, B16F10 melanoma cells were cultured in 24-well plates and exposed to different concentrations of ciprofloxacin (10-1000 µg/ml). Viability was determined, after 24 and 48 h, using trypan blue. RESULTS: The serum levels of VEGF significantly decreased in ciprofloxacin-treated mice when compared to the controls. None of the control mice survived beyond day 8, whereas 16.67% of those treated with ciprofloxacin survived up to 18 days. In addition, the viability of B16F10 melanoma cells, in-vitro, significantly decreased with increasing concentrations of ciprofloxacin after 24 and 48 h. CONCLUSION: Ciprofloxacin seems to exhibit antitumor activity both in-vivo and in-vitro. This effect might be explained by several mechanisms such as directly inducing cancer cell death or altering the immune response through the modification of the normal microbiota.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Ciprofloxacina/administración & dosificación , Melanoma Experimental/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/sangre , Animales , Línea Celular Tumoral , Ciprofloxacina/farmacocinética , Humanos , Melanoma Experimental/sangre , Melanoma Experimental/patología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...