Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 92, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500045

RESUMEN

BACKGROUND: The soil biota consists of a complex assembly of microbial communities and other organisms that vary significantly across farming systems, impacting soil health and plant productivity. Despite its importance, there has been limited exploration of how different cropping systems influence soil and plant root microbiomes. In this study, we investigated soil physicochemical properties, along with soil and maize-root microbiomes, in an agroecological cereal-legume companion cropping system known as push-pull technology (PPT). This system has been used in agriculture for over two decades for insect-pest management, soil health improvement, and weed control in sub-Saharan Africa. We compared the results with those obtained from maize-monoculture (Mono) cropping system. RESULTS: The PPT cropping system changed the composition and diversity of soil and maize-root microbial communities, and led to notable improvements in soil physicochemical characteristics compared to that of the Mono cropping system. Distinct bacterial and fungal genera played a crucial role in influencing the variation in microbial diversity within these cropping systems. The relative abundance of fungal genera Trichoderma, Mortierella, and Bionectria and bacterial genera Streptomyces, RB41, and Nitrospira were more enriched in PPT. These microbial communities are associated with essential ecosystem services such as plant protection, decomposition, carbon utilization, bioinsecticides production, nitrogen fixation, nematode suppression, phytohormone production, and bioremediation. Conversely, pathogenic associated bacterial genus including Bryobacter were more enriched in Mono-root. Additionally, the Mono system exhibited a high relative abundance of fungal genera such as Gibberella, Neocosmospora, and Aspergillus, which are linked to plant diseases and food contamination. Significant differences were observed in the relative abundance of the inferred metabiome functional protein pathways including syringate degradation, L-methionine biosynthesis I, and inosine 5'-phosphate degradation. CONCLUSION: Push-pull cropping system positively influences soil and maize-root microbiomes and enhances soil physicochemical properties. This highlights its potential for agricultural and environmental sustainability. These findings contribute to our understanding of the diverse ecosystem services offered by this cropping system where it is practiced regarding the system's resilience and functional redundancy. Future research should focus on whether PPT affects the soil and maize-root microbial communities through the release of plant metabolites from the intercrop root exudates or through the alteration of the soil's nutritional status, which affects microbial enzymatic activities.


Asunto(s)
Microbiota , Resiliencia Psicológica , Suelo/química , Zea mays , Hongos/genética , Agricultura/métodos , Bacterias/genética , Microbiología del Suelo
2.
Insects ; 13(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36135491

RESUMEN

Following its recent invasion of African countries, fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae), now co-exists with resident stemborers such as Busseola fusca (Lepidoptera: Noctuidae) and Chilo partellus (Lepidoptera: Crambidae) causing severe damage to maize crops. Due to niche overlap, interspecific interactions occur among the three species, but the mechanisms and degree remain unclear. In this study, we assessed plant-mediated intraspecific and interspecific interactions, predation in laboratory and semi-field settings, and larval field occurrence of S. frugiperda and the two stemborer species. Larval feeding assays to evaluate competitive plant-mediated interactions demonstrated that initial S. frugiperda feeding negatively affected subsequent stemborer larval feeding and survival, suggesting induction of herbivore-induced mechanisms by S. frugiperda, which deters establishment and survival of competing species. Predation assays showed that, at different developmental larval stages, second−sixth instars of S. frugiperda preyed on larvae of both B. fusca and C. partellus. Predation rates of S. frugiperda on stemborers was significantly higher than cannibalism of S. frugiperda and its conspecifics (p < 0.001). Cannibalism of S. frugiperda in the presence of stemborers was significantly lower than in the presence of conspecifics (p = 0.04). Field surveys showed a significantly higher number of S. frugiperda larvae than stemborers across three altitudinally different agroecological zones (p < 0.001). In conclusion, this study showed that the invasive S. frugiperda exhibited a clear competitive advantage over resident stemborers within maize cropping systems in Kenya. Our findings reveal some of the possible mechanisms employed by S. frugiperda to outcompete resident stemborers and provide crucial information for developing pest management strategies for these lepidopteran pests.

3.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35743041

RESUMEN

Grain legumes play a significant role in smallholder farming systems in Africa because of their contribution to nutrition and income security and their role in fixing nitrogen. Biological Nitrogen Fixation (BNF) serves a critical role in improving soil fertility for legumes. Although much research has been conducted on rhizobia in nitrogen fixation and their contribution to soil fertility, much less is known about the distribution and diversity of the bacteria strains in different areas of the world and which of the strains achieve optimal benefits for the host plants under specific soil and environmental conditions. This paper reviews the distribution, characterization, and commercialization of elite rhizobia strains in Africa.


Asunto(s)
Fabaceae , Rhizobium , Fabaceae/microbiología , Fijación del Nitrógeno , Suelo , Simbiosis
4.
J Infect Dis ; 214(suppl 3): S110-S121, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402779

RESUMEN

BACKGROUND: Kenema Government Hospital (KGH) has developed an advanced clinical and laboratory research capacity to manage the threat of Lassa fever, a viral hemorrhagic fever (VHF). The 2013-2016 Ebola virus (EBOV) disease (EVD) outbreak is the first to have occurred in an area close to a facility with established clinical and laboratory capacity for study of VHFs. METHODS: Because of its proximity to the epicenter of the EVD outbreak, which began in Guinea in March 2014, the KGH Lassa fever Team mobilized to establish EBOV surveillance and diagnostic capabilities. RESULTS: Augustine Goba, director of the KGH Lassa laboratory, diagnosed the first documented case of EVD in Sierra Leone, on 25 May 2014. Thereafter, KGH received and cared for numbers of patients with EVD that quickly overwhelmed the capacity for safe management. Numerous healthcare workers contracted and lost their lives to EVD. The vast majority of subsequent EVD cases in West Africa can be traced back to a single transmission chain that includes this first diagnosed case. CONCLUSIONS: Responding to the challenges of confronting 2 hemorrhagic fever viruses will require continued investments in the development of countermeasures (vaccines, therapeutic agents, and diagnostic assays), infrastructure, and human resources.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/aislamiento & purificación , Genoma Viral/genética , Fiebre Hemorrágica Ebola/epidemiología , Fiebre de Lassa/epidemiología , Virus Lassa/aislamiento & purificación , Adolescente , Adulto , África Occidental/epidemiología , Niño , Preescolar , Ebolavirus/genética , Monitoreo Epidemiológico , Femenino , Genómica , Guinea/epidemiología , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Humanos , Fiebre de Lassa/diagnóstico , Fiebre de Lassa/transmisión , Fiebre de Lassa/virología , Virus Lassa/genética , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN , Sierra Leona/epidemiología , Adulto Joven
5.
Cell ; 161(7): 1516-26, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091036

RESUMEN

The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


Asunto(s)
Ebolavirus/genética , Ebolavirus/aislamiento & purificación , Genoma Viral , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Mutación , Evolución Biológica , Brotes de Enfermedades , Ebolavirus/clasificación , Fiebre Hemorrágica Ebola/transmisión , Humanos , Sierra Leona/epidemiología , Manejo de Especímenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...