Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Elife ; 122023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458420

RESUMEN

The Drosophila polyadenosine RNA binding protein Nab2, which is orthologous to a human protein lost in a form of inherited intellectual disability, controls adult locomotion, axon projection, dendritic arborization, and memory through a largely undefined set of target RNAs. Here, we show a specific role for Nab2 in regulating splicing of ~150 exons/introns in the head transcriptome and focus on retention of a male-specific exon in the sex determination factor Sex-lethal (Sxl) that is enriched in female neurons. Previous studies have revealed that this splicing event is regulated in females by N6-methyladenosine (m6A) modification by the Mettl3 complex. At a molecular level, Nab2 associates with Sxl pre-mRNA in neurons and limits Sxl m6A methylation at specific sites. In parallel, reducing expression of the Mettl3, Mettl3 complex components, or the m6A reader Ythdc1 rescues mutant phenotypes in Nab2 flies. Overall, these data identify Nab2 as an inhibitor of m6A methylation and imply significant overlap between Nab2 and Mettl3 regulated RNAs in neuronal tissue.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Humanos , Femenino , Masculino , Metilación , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Empalme Alternativo , Empalme del ARN , Proteínas de Drosophila/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Drosophila/genética , Neuronas/metabolismo
2.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555532

RESUMEN

Cellular functions depend on the dynamic assembly of protein regulator complexes at specific cellular locations. Single Molecule Tracking (SMT) is a method of choice for the biochemical characterization of protein dynamics in vitro and in vivo. SMT follows individual molecules in live cells and provides direct information about their behavior. SMT was successfully applied to mammalian models. However, mammalian cells provide a complex environment where protein mobility depends on numerous factors that are difficult to control experimentally. Therefore, yeast cells, which are unicellular and well-studied with a small and completely sequenced genome, provide an attractive alternative for SMT. The simplicity of organization, ease of genetic manipulation, and tolerance to gene fusions all make yeast a great model for quantifying the kinetics of major enzymes, membrane proteins, and nuclear and cellular bodies. However, very few researchers apply SMT techniques to yeast. Our goal is to promote SMT in yeast to a wider research community. Our review serves a dual purpose. We explain how SMT is conducted in yeast cells, and we discuss the latest insights from yeast SMT while putting them in perspective with SMT of higher eukaryotes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Secuencia de Bases , Biofisica , Mamíferos/metabolismo
3.
PLoS Genet ; 16(7): e1008901, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645003

RESUMEN

The RNA exosome is an evolutionarily-conserved ribonuclease complex critically important for precise processing and/or complete degradation of a variety of cellular RNAs. The recent discovery that mutations in genes encoding structural RNA exosome subunits cause tissue-specific diseases makes defining the role of this complex within specific tissues critically important. Mutations in the RNA exosome component 3 (EXOSC3) gene cause Pontocerebellar Hypoplasia Type 1b (PCH1b), an autosomal recessive neurologic disorder. The majority of disease-linked mutations are missense mutations that alter evolutionarily-conserved regions of EXOSC3. The tissue-specific defects caused by these amino acid changes in EXOSC3 are challenging to understand based on current models of RNA exosome function with only limited analysis of the complex in any multicellular model in vivo. The goal of this study is to provide insight into how mutations in EXOSC3 impact the function of the RNA exosome. To assess the tissue-specific roles and requirements for the Drosophila ortholog of EXOSC3 termed Rrp40, we utilized tissue-specific RNAi drivers. Depletion of Rrp40 in different tissues reveals a general requirement for Rrp40 in the development of many tissues including the brain, but also highlight an age-dependent requirement for Rrp40 in neurons. To assess the functional consequences of the specific amino acid substitutions in EXOSC3 that cause PCH1b, we used CRISPR/Cas9 gene editing technology to generate flies that model this RNA exosome-linked disease. These flies show reduced viability; however, the surviving animals exhibit a spectrum of behavioral and morphological phenotypes. RNA-seq analysis of these Drosophila Rrp40 mutants reveals increases in the steady-state levels of specific mRNAs and ncRNAs, some of which are central to neuronal function. In particular, Arc1 mRNA, which encodes a key regulator of synaptic plasticity, is increased in the Drosophila Rrp40 mutants. Taken together, this study defines a requirement for the RNA exosome in specific tissues/cell types and provides insight into how defects in RNA exosome function caused by specific amino acid substitutions that occur in PCH1b can contribute to neuronal dysfunction.


Asunto(s)
Enfermedades Cerebelosas/genética , Proteínas del Citoesqueleto/genética , Drosophila melanogaster/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas de Unión al ARN/genética , Sustitución de Aminoácidos/genética , Animales , Sistemas CRISPR-Cas/genética , Enfermedades Cerebelosas/patología , Cerebelo/metabolismo , Cerebelo/patología , Modelos Animales de Enfermedad , Exosomas/genética , Humanos , Mutación/genética , Neuronas/patología , ARN/genética
4.
Genome Biol ; 18(1): 48, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28274275

RESUMEN

BACKGROUND: Hirschsprung disease (HSCR), which is congenital obstruction of the bowel, results from a failure of enteric nervous system (ENS) progenitors to migrate, proliferate, differentiate, or survive within the distal intestine. Previous studies that have searched for genes underlying HSCR have focused on ENS-related pathways and genes not fitting the current knowledge have thus often been ignored. We identify and validate novel HSCR genes using whole exome sequencing (WES), burden tests, in silico prediction, unbiased in vivo analyses of the mutated genes in zebrafish, and expression analyses in zebrafish, mouse, and human. RESULTS: We performed de novo mutation (DNM) screening on 24 HSCR trios. We identify 28 DNMs in 21 different genes. Eight of the DNMs we identified occur in RET, the main HSCR gene, and the remaining 20 DNMs reside in genes not reported in the ENS. Knockdown of all 12 genes with missense or loss-of-function DNMs showed that the orthologs of four genes (DENND3, NCLN, NUP98, and TBATA) are indispensable for ENS development in zebrafish, and these results were confirmed by CRISPR knockout. These genes are also expressed in human and mouse gut and/or ENS progenitors. Importantly, the encoded proteins are linked to neuronal processes shared by the central nervous system and the ENS. CONCLUSIONS: Our data open new fields of investigation into HSCR pathology and provide novel insights into the development of the ENS. Moreover, the study demonstrates that functional analyses of genes carrying DNMs are warranted to delineate the full genetic architecture of rare complex diseases.


Asunto(s)
Exoma , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedad de Hirschsprung/genética , Alelos , Animales , Estudios de Casos y Controles , Biología Computacional/métodos , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Genotipo , Humanos , Mutación , Fenotipo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...