Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 21461, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052913

RESUMEN

A large body of evidence has shown a direct link between arsenic exposure and drug resistance to Leishmania parasites against antimonial preparations in visceral leishmaniasis (VL) hyper-endemic regions, especially in India and its sub-continent. However, the implicated roles of arsenic on the VL host, pathophysiological changes, and immune function have not yet been clarified, particularly at the reported concentration of arsenic in the VL hyper-endemic area of Bihar, India. Herein, we exposed the mouse VL model to arsenic (0.5 mg/L to 2 mg/L) through their drinking water and analyzed its effect on T cells proliferation, Th1/Th2-mediators, MAPK signaling cascade, and parasite load in preclinical models. Coherently, the parasite count in Giemsa stained spleen imprint has been investigated and found significant positive associations with levels of arsenic exposure. The liver and kidney function tests (AST, ALT, ALP, BUN, Creatinine, Urea, etc.) are apparent to hepatonephric toxicity in arsenic exposed VL mice compared to unexposed. This observation appears to be consistent with the up-regulated expression of immune regulatory Th2 mediators (IL-4, IL-10, TGF-ß) and down-regulated expression of Th1 mediators (IL-12, IFN-γ, TNF-α) with a suppressed leishmanicidal function of macrophage (ROS, NO, iNOS). We also established that arsenic exposure modulated the host ERK-1/2 and p38 MAPK signaling cascade, limited T lymphocyte proliferation, and a lower IgG2a/IgG1 ratio to favor the Leishmania parasite survival inside the host. This study suggests that the contorted Th1-subtype and exacerbated Th2-subtype immune responses are involved in the increased susceptibility and pathogenesis of Leishmania parasite among subjects/individuals regularly exposed to arsenic.


Asunto(s)
Arsénico , Agua Potable , Leishmania donovani , Leishmaniasis Visceral , Humanos , Animales , Ratones , Leishmaniasis Visceral/parasitología , Arsénico/toxicidad , Progresión de la Enfermedad
2.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903437

RESUMEN

Therapeutics, based on small interfering RNA (siRNA), have demonstrated tremendous potential for treating cancer. However, issues such as non-specific targeting, premature degradation, and the intrinsic toxicity of the siRNA, have to be solved before they are ready for use in translational medicines. To address these challenges, nanotechnology-based tools might help to shield siRNA and ensure its specific delivery to the target site. Besides playing a crucial role in prostaglandin synthesis, the cyclo-oxygenase-2 (COX-2) enzyme has been reported to mediate carcinogenesis in various types of cancer, including hepatocellular carcinoma (HCC). We encapsulated COX-2-specific siRNA in Bacillus subtilis membrane lipid-based liposomes (subtilosomes) and evaluated their potential in the treatment of diethylnitrosamine (DEN)-induced hepatocellular carcinoma. Our findings suggested that the subtilosome-based formulation was stable, releasing COX-2 siRNA in a sustained manner, and has the potential to abruptly release encapsulated material at acidic pH. The fusogenic property of subtilosomes was revealed by FRET, fluorescence dequenching, content-mixing assay, etc. The subtilosome-based siRNA formulation was successful in inhibiting TNF-α expression in the experimental animals. The apoptosis study indicated that the subtilosomized siRNA inhibits DEN-induced carcinogenesis more effectively than free siRNA. The as-developed formulation also suppressed COX-2 expression, which in turn up-regulated the expression of wild-type p53 and Bax on one hand and down-regulated Bcl-2 expression on the other. The survival data established the increased efficacy of subtilosome-encapsulated COX-2 siRNA against hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Dietilnitrosamina/farmacología , ARN Interferente Pequeño/farmacología , Ciclooxigenasa 2 , Apoptosis , Carcinogénesis
3.
Vaccines (Basel) ; 11(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36679946

RESUMEN

In spite of its high effectiveness in the treatment of both leishmaniasis as well as a range of fungal infections, the free form of the polyene antibiotic amphotericin B (AmB) does not entertain the status of the most preferred drug of choice in clinical settings. The high intrinsic toxicity of the principal drug could be considered the main impedance in the frequent medicinal use of this otherwise very effective antimicrobial agent. Taking into consideration this fact, the pharma industry has introduced many novel dosage forms of AmB to alleviate its toxicity issues. However, the limited production, high cost, requirement for a strict cold chain, and need for parenteral administration are some of the limitations that explicitly compel professionals to look for the development of an alternate dosage form of this important drug. Considering the fact that the nano-size dimensions of drug formulation play an important role in increasing the efficacy of the core drug, we employed a green method for the development of nano-assemblies of AmB (AmB-NA). The as-synthesized AmB-NA manifests desirable pharmacokinetics in the treated animals. The possible mechanistic insight suggested that as-synthesized AmB-NA induces necrosis-mediated cell death and severe mitochondrial dysfunction in L. donovani promastigotes by triggering depolarization of mitochondrial membrane potential. In vivo studies demonstrate a noticeable decline in parasite burden in the spleen, liver, and bone marrow of the experimental BALB/c mice host. In addition to successfully suppressing the Leishmania donovani, the as-formed AmB-NA formulation also modulates the host immune system with predominant Th1 polarization, a key immune defender that facilitates the killing of the intracellular parasite.

5.
Front Immunol ; 12: 706727, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777338

RESUMEN

Tuberculosis (TB) is a significant and continuing problem worldwide, with a death toll of around 1.5 million human lives annually. BCG, the only vaccine against TB, offers a varied degree of protection among human subjects in different regions and races of the world. The majority of the population living near the tropics carries a varying degree of tolerance against BCG due to the widespread prevalence of non-tuberculous mycobacteria (NTM). Interestingly, ≈90% of the Mycobacterium tuberculosis (Mtb) infected population restrain the bacilli on its own, which strengthens the notion of empowering the host immune system to advance the protective efficacy of existing mycobacterial vaccines. In general, Mtb modulates IL-10/STAT3 signaling to skew host mononuclear phagocytes toward an alternatively activated, anti-inflammatory state that helps it thrive against hostile immune advances. We hypothesized that modulating the IL-10/STAT3 driven anti-inflammatory effects in mononuclear cells may improve the prophylactic ability of TB vaccines. This study investigated the immunotherapeutic ability of a porphyrin based small molecule inhibitor of IL-10/STAT3 axis, 5, 15-diphenyl porphyrin (DPP), in improving anti-TB immunity offered by second generation recombinant BCG30 (rBCG30-ARMF-II®) vaccine in mice. The DPP therapy potentiated vaccine induced anti-TB immunity by down-modulating anti-inflammatory responses, while simultaneously up-regulating pro-inflammatory immune effector responses in the immunized host. The employed DPP based immunotherapy led to the predominant activation/proliferation of pro-inflammatory monocytes/macrophages/DCs, the concerted expansion of CD4+/CD8+ effector and central memory T cells, alongside balanced Th17 and Treg cell amplification, and conferred augmented resistance to aerosol Mtb challenge in rBCG30 immunized BALB/c mice.


Asunto(s)
Vacuna BCG/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Porfirinas/farmacología , Tuberculosis/inmunología , Animales , Vacuna BCG/administración & dosificación , Plasticidad de la Célula/efectos de los fármacos , Citocinas/metabolismo , Humanos , Inmunización , Inmunomodulación , Inmunoterapia , Mediadores de Inflamación/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Ratones , Fagocitos/efectos de los fármacos , Fagocitos/inmunología , Fagocitos/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Tuberculosis/prevención & control
6.
Front Aging ; 2: 748591, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35822018

RESUMEN

During the last 2 years, the entire world has been severely devastated by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic (COVID-19) as it resulted in several million deaths across the globe. While the virus infects people indiscriminately, the casualty risk is higher mainly in old, and middle-aged COVID-19 patients. The incidences of COVID-19 associated co-morbidity and mortality have a great deal of correlation with the weakened and malfunctioning immune systems of elderly people. Presumably, due to the physiological changes associated with aging and because of possible comorbidities such as diabetes, hypertension, obesity, cardiovascular, and lung diseases, which are more common in elderly people, may be considered as the reason making the elderly vulnerable to the infection on one hand, and COVID-19 associated complications on the other. The accretion of senescent immune cells not only contributes to the deterioration of host defense, but also results in elevated inflammatory phenotype persuaded immune dysfunction. In the present review, we envisage to correlate functioning of the immune defense of older COVID-19 patients with secondary/super infection, increased susceptibility or aggravation against already existing cancer, infectious, autoimmune, and other chronic inflammatory diseases. Moreover, we have discussed how age-linked modulations in the immune system affect therapeutic response against administered drugs as well as immunological response to various prophylactic measures including vaccination in the elderly host. The present review also provides an insight into the intricate pathophysiology of the aging and the overall immune response of the host to SARS-CoV-2 infection. A better understanding of age-related immune dysfunction is likely to help us in the development of targeted preemptive strategies for deadly COVID-19 in elderly patients.

9.
Front Immunol ; 11: 817, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582140

RESUMEN

Visceral leishmaniasis (VL)-related mortality and morbidity imposes a great deal of health concern across the globe. The existing anti-leishmanial drug regimen generally fails to eliminate newly emerging resistant isolates of this dreadful parasite. In such circumstances, the development of a prophylactic strategy to impart protection against the disease is likely to take center stage. In order to develop a promising prophylactic vaccine, it is desirable to identify an adequately potential vaccine candidate. In silico analysis of Leishmania tubulin folding cofactor D protein predicted its potential to activate both B- and T-cell repertoires. Furthermore, the ELISA employing anti-peptide27 (a segment of tubulin folding cofactor D) antibody revealed its proficiency in VL diagnosis and treatment monitoring. The peptide27 and its cocktail with another Leishmania peptide (peptide23) prompted the up-regulation of pro-inflammatory cytokines, such as IFN-γ, TNF-α, IL-2, IL-17, etc., and the down-regulation of immune-regulatory cytokines, such as IL-10, in the immunized BALB/c mice. Coherent to the consequence of peptide-specific humoral immune response, peptide cocktail-based immunization ensued in the predominant amplification of pathogen-specific IgG2a over the IgG1 isotype, up-regulated proliferation of T lymphocytes, and enhanced production of nitric oxide, reactive oxygen species, etc. We also established that the peptide cocktail modulated host MAPK signaling to favor the amplification of Th1-dominated immune response in the host. The peptide cocktail mediated the activation of the host immune armory, which was eventually translated into a significant decline in parasitic load in the visceral organs of experimental animals challenged with Leishmania donovani.


Asunto(s)
Polaridad Celular/inmunología , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Proteínas Asociadas a Microtúbulos/inmunología , Proteínas Protozoarias/inmunología , Células TH1/inmunología , Células Th2/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Adolescente , Adulto , Animales , Modelos Animales de Enfermedad , Femenino , Interacciones Huésped-Patógeno/inmunología , Humanos , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Visceral/sangre , Leishmaniasis Visceral/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Adulto Joven
10.
Front Chem ; 8: 103, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32185160

RESUMEN

In the present study, we have synthesized silver-copper nanocomposites (Ag-Cu NCs) using an Olax scandens leaf extract (green synthesis method) and evaluated their antimicrobial potential against less susceptible pathogens. The kinetics of Ag-Cu NCs synthesis was followed by UV-VIS and fluorescence spectroscopy. The physicochemical characterization of as-synthesized Ag-Cu NCs was executed using electron microscopy, Energy Dispersive X-Ray, Fourier Transform Infrared Spectroscopy, and a Differential Light Scattering method. As-synthesized Ag-Cu NCs induced the formation of Reactive Oxygen Species (ROS), thereby causing alteration and decrementation of cellular proteins, DNA, lipids, etc., and eventually leading to cell death, as determined by a Live/Dead assay. Next, we assessed the anti-biofilm potential of as-synthesized Ag-Cu NCs against biofilm forming bacteria. The as-synthesized Ag-Cu NCs, when compared to monometallic silver nanoparticles, exhibited significantly higher anti-microbial activity against both sensitive as well as drug resistant microbial isolates.

11.
Front Chem ; 7: 787, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31799242

RESUMEN

In general, neurodegenerative disorders have a great deal of correlation with the misfolded as well as aggregated forms of protein-based macromolecules. Among various species formed during the aggregation process, protein oligomers have been classified as most toxic entities against several types of living cells. A series of chemicals have been developed to inhibit protein aggregation as a measure to regulate neurodegenerative diseases. Recently, various classes of nanoparticles have also been reported to inhibit protein aggregation. In the present study, we synthesized fluorescent gold nanoparticles (B-AuNPs) employing Olax scandens leaf extract. Next, an in vitro study was performed to assess the effect of as-synthesized B-AuNPs on the aggregation behavior of the ovalbumin (OVA) and other related model proteins. We performed an extensive study to elucidate anti-amyloidogenic properties of nano-sized entities and established that small-sized B-AuNPs manifest chaperone potential against protein aggregation. Further, we exploited as-synthesized B-AuNPs as a mean to prevent protein aggregation mediated toxicity in neuroblastoma cells.

12.
PLoS One ; 14(2): e0210737, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30721235

RESUMEN

The arsenic contamination of ground water in visceral leishmaniasis (VL) endemic areas in Bihar, India leads to human exposure through drinking water. Possibly, the consumed arsenic (As) accumulates in the tissues of VL patients, who subsequently internalize intracellular amastigotes to confer resistance against chemotherapy to the parasite, leading to modulation in the host's immune response. This hypothesis appears to be consistent with the in vitro findings that in arsenic-exposed parasites, the mitochondrial membrane potential became depolarized, whereas the reduced thiol and lactate production was overexpressed with enhanced glucose consumption; therefore, the reduced thiol possibly supports an immunosuppressive state in the host cells. This observation was well supported by the down-regulated expression of pro-inflammatory cytokines (IL-2, IL-12, IFN-γ, and TNF-α) with a suppressed anti-leishmanial function of macrophage (NO, ROS). In contrast, the pathophysiological mechanism of VL has received ample support by the promotion of Th2 cytokines (IL-4 and IL-10) in the presence of arsenic-exposed Leishmania parasites (LdAS). Dysfunction of mitochondria and the overexpression of lactate production raise the possibility of the Warburg effect being operative through the up-regulation of glucose consumption by parasites to enhance the energy production, possibly augmenting virulence. Therefore, we surmise from our data that arsenic exposure to Leishmania donovani modulates the immune response and infection pattern by impairing parasite function, which may affect the anti-leishmanial effect in VL.


Asunto(s)
Arsénico/farmacología , Leishmania donovani/inmunología , Leishmaniasis Visceral , Macrófagos Peritoneales , Animales , Citocinas/inmunología , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/patología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/parasitología , Macrófagos Peritoneales/patología , Ratones , Óxido Nítrico/inmunología , Especies Reactivas de Oxígeno/inmunología
13.
Cytokine ; 113: 200-215, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30001865

RESUMEN

The shift of macrophage and T-cell repertoires towards proinflammatory cytokine signalling ensures the generation of host-protective machinery that is otherwise compromised in cases of the intracellular Leishmania parasite. Different groups have attempted to restore host protective immunity. These vaccine candidates showed good responses and protective effects in murine models, but they generally failed during human trials. In the present study, we evaluated the effect of 97 kDa recombinant nucleoporin-93 of Leishmania donovani (rLd-NUP93) on mononuclear cells in healthy and treated visceral leishmaniasis (VL) patients and on THP-1 cell lines. rLd-NUP93 stimulation increased the expression of the early lymphocyte activation marker CD69 on CD4+ and CD8+ T cells. The expression of the host protective pro-inflammatory cytokines IFN-γ, IL-12 and TNF-α was increased, with a corresponding down-regulation of IL-10 and TGF-ß upon rLd-NUP93 stimulation. This immune polarization resulted in the up-regulation of NF-κB p50 with scant expression of SMAD-4. Augmenting lymphocyte proliferation upon priming with rLd-NUP93 ensured its potential for activation and generation of strong T-cell mediated immune responses. This stimulation extended the leishmanicidal activity of macrophages by releasing high amounts of reactive oxygen species (ROS). Further, the leishmanicidal activity of macrophages was intensified by the elevated production of nitric oxide (NO). The fact that this antigen was earlier reported in circulating immune complexes of VL patients highlights its antigenic importance. In addition, in silico analysis suggested the presence of MHC class I and II-restricted epitopes that proficiently trigger CD8+ and CD4+ T-cells, respectively. This study reported that rLd-NUP93 was an effective immunoprophylactic agent that can be explored in future vaccine design.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunidad Celular , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Activación de Linfocitos , Macrófagos/inmunología , Proteínas de Complejo Poro Nuclear/inmunología , Proteínas Protozoarias/inmunología , Adulto , Animales , Femenino , Humanos , Leishmania donovani/genética , Vacunas contra la Leishmaniasis/genética , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/prevención & control , Masculino , Persona de Mediana Edad , Proteínas de Complejo Poro Nuclear/genética , Proteínas Protozoarias/genética , Conejos , Células THP-1
14.
Cell Immunol ; 332: 51-57, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30049412

RESUMEN

Visceral leishmaniasis (VL) is a disease caused by protozoan species of the genus Leishmania and is transmitted through bites from the Phlebotomus sand fly; it is associated with considerable morbidity and mortality in many parts of world, including India. Reports on the protective role played by saliva proteins of Lutozomyia longipalpis, Phlebotomus papatasi and Phlebotomus duboscqi. are available. However, no studies have explored the salivary proteins of P. argentipes, which is the known proven vector for the transmission of VL in the Indian sub-continent. Herein we revealed the presence of two proteins of 14.2 and one protein of 13.6 kDa in Indian strain P. argentipes which is absolute identical to previously reported protein of SP15 family (PagSP01, PagSP02 and PagSP07) of P. argentipes of NIH colony, USA. In an experimental study on P. argentipes from Bihar, India, we demonstrated that a strong humoral and cellular immune response was triggered to reduce the concomitant Leishmania load in groups of immunized mice. The immunized group produced a considerable amount of IgG antibodies, and their splenocytes generated TH1 cytokines (IL-12, IFN-γ) with the support of delayed-type hypersensitivity (DTH) reactivity in such mice at the challenged site. We summarize from our data that some identical proteins to previous from SP15 family protein of 14.2 and 13.6 kDa molecular size, derived from Indian P. argentipes and reported its first time, can also be significant in resolution of VL infection after modulation of host protective T cell response in VL.


Asunto(s)
Leishmania/inmunología , Leishmaniasis Visceral/inmunología , Phlebotomus/inmunología , Psychodidae/inmunología , Saliva/inmunología , Proteínas y Péptidos Salivales/inmunología , Animales , Citocinas/inmunología , Femenino , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos BALB C , Células TH1/inmunología
15.
Cytokine ; 110: 306-315, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29807685

RESUMEN

Sterile cure from visceralized Leishmania donovani (L. donovani) needs Th1 cell support along with the assistance from innate immune cells, NK cells and NKT cells. NKT cells play as a connecting link between innate and adaptive immune cell and support T helper cell function. Earlier, a categorical function of CD56 positive CD4+ or CD8+ NKT cells was reported in visceral leishmaniasis (VL). It was observed in in vitro that CD4+CD56+NKT cells, but not CD8+CD56+NKT cells, were accumulated at the L. donovani infection site. Therefore, in vitro experiments have been carried out to decipher the mechanism behind preferential accumulation of CD4+CD56+NKT cells at infection site. In this study, 1.89 fold higher expression of CCL4/MIP-1ß was noticed in infected macrophages. The higher expression of CCL4 was correlated with preferential accumulation of CCR5+CD4+CD56+NKT cells and apoptosis of CD8+CD56+NKT cells at in vitro infection site. The CD4+CD56+NKT cells were also observed expressing TGF-ß dominantly. Interaction of CCL4 chemotaxis was interrupted by blocking, which led to drift back the TGF-ß producing CD4+CD56+NKT cells and promoted CD8+CD56+NKT cells recruitment in in vitro infection site. CCR5 blockade also reduced CD25 and FoxP3 positive CD4+CD56+NKT cells in in vitro infection site. Therefore, it was concluded that Leishmania promotes strategic expression of CCL4, which alternately attracts CCR5+ cells, mostly expressing regulatory cytokines, at infection site. This reduces the CD8+CD56+NKT cells at infection site through Smad4 mediated TGF-ß expression and activation of caspases. Data indicates that L. donovani induces higher expression of CCL4 in host cell to attract CCR5+ cells under its strategic plan to downregulate host immune response.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Antígeno CD56/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiocina CCL4/inmunología , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Células T Asesinas Naturales/inmunología , Adolescente , Adulto , Apoptosis/inmunología , Caspasas/inmunología , Niño , Femenino , Factores de Transcripción Forkhead/inmunología , Humanos , Masculino , Persona de Mediana Edad , Proteína Smad4/inmunología , Factor de Crecimiento Transformador beta/inmunología , Adulto Joven
16.
Hum Immunol ; 79(8): 616-620, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29842895

RESUMEN

This study reports a structural and functional heterogeneity of CD8+CD56+NKT cells, which usually decrease quantitatively during visceral leishmaniasis. Based on fluorescence intensity of CD8 receptors on CD56+NKT cells, two populations of CD8+CD56+NKT cells have been identified. These cells were recognized as CD8dimCD56+NKT and CD8brightCD56+NKT cells. We further analyzed the functional nature of CD8dim and CD8bright positive CD56+NKT cells. In comparison to CD8brightCD56+NKT cells, a significantly higher percentage of CD8dimCD56+NKT cells expressed KIR during VL. The percentage of CD8dimCD56+NKT cells expressing KIR was found 4 fold higher in VL as compared to healthy subjects. But, the difference was insignificant in case of CD8brightCD56+NKT cells. CD8+CD56+NKT cells release granzyme B to kill the infected cells. A categorical difference was also observed in the function of CD8dimCD56+NKT and CD8brightCD56+NKT cells during visceral leishmaniasis. The percentage of granzyme B expressing CD8dimCD56+NKT cells was 2.83 fold higher in VL compared to healthy subjects. But, there was no significant difference in granzyme B expressing CD8brightCD56+NKT cells in samples from healthy and VL subjects. However, within VL subject, the percentage of granzyme B expressing CD8dimCD56+NKT cells was 5.7 fold higher in comparison to CD8brightCD56+NKT cells. This study concludes that CD8dimCD56+NKT cells are more cytotoxic than CD8brightCD56+NKT cells during VL.


Asunto(s)
Leishmaniasis Visceral/inmunología , Subgrupos Linfocitarios/inmunología , Células T Asesinas Naturales/inmunología , Antígeno CD56/metabolismo , Antígenos CD8/metabolismo , Separación Celular , Células Cultivadas , Citotoxicidad Inmunológica , Femenino , Citometría de Flujo , Granzimas/metabolismo , Humanos , Inmunofenotipificación , Masculino , Receptores KIR/metabolismo
17.
Parasitology ; 145(3): 292-306, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29140228

RESUMEN

Immunoactivation depends upon the antigen potential to modulate T-cell repertoires. The present study has enumerated the effect of 61 kDa recombinant Leishmania donovani co-factor-independent phosphoglycerate mutase (rLd-iPGAM) on mononuclear cells of healthy and treated visceral leishmaniasis subjects as well as on THP-1 cell line. rLd-iPGAM stimulation induced higher expression of interleukin-1ß (IL-1ß) in the phagocytic cell, its receptor and CD69 on T-cell subsets. These cellular activations resulted in upregulation of host-protective cytokines IL-2, IL-12, IL-17, tumour necrosis factor-α and interferon-γ, and downregulation of IL-4, IL-10 and tumour growth factor-ß. This immune polarization was also evidenced by upregulation of nuclear factor-κ light-chain enhancer of activated B cells p50 and regulated expression of suppressor of mother against decapentaplegic protein-4. rLd-iPGAM stimulation also promoted lymphocyte proliferation and boosted the leishmaniacidal activity of macrophages by upregulating reactive oxygen species. It also induced 1·8-fold higher release of nitric oxide (NO) by promoting the transcription of inducible nitric oxide synthase gene. Besides, in silico analysis suggested the presence of major histocompatibility complex class I and II restricted epitopes, which can proficiently trigger CD8+ and CD4+ cells, respectively. This study reports rLd-iPGAM as an effective immunoprophylactic agent, which can be used in future vaccine design.


Asunto(s)
Epítopos de Linfocito T/inmunología , Leishmania donovani/enzimología , Leishmania donovani/inmunología , Macrófagos/inmunología , Fosfoglicerato Mutasa/inmunología , Proteínas Recombinantes/farmacología , Línea Celular , Coenzimas/deficiencia , Coenzimas/genética , Simulación por Computador , Citocinas/efectos de los fármacos , Citocinas/inmunología , Epítopos de Linfocito T/efectos de los fármacos , Genes MHC Clase I/inmunología , Genes MHC Clase II/inmunología , Humanos , Interleucina-1beta/efectos de los fármacos , Interleucina-1beta/inmunología , Leishmaniasis Visceral/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/parasitología , Activación de Linfocitos/efectos de los fármacos , Macrófagos/parasitología , Subunidad p50 de NF-kappa B/efectos de los fármacos , Subunidad p50 de NF-kappa B/genética , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Células TH1
18.
PLoS One ; 12(8): e0182474, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28820895

RESUMEN

The unreliability of most of the existing antibody-based diagnostic kits to discriminate between active and treated VL cases, relapse situation and reinfection are a major hurdle in controlling the cases of Kala-azar in an endemic area. An antigen targeted diagnostic approaches can be an attractive strategy to overcome these problems. Hence, this study was focused on identifying the Leishmania antigens, lies in circulating immune complex (CICs), can be used for diagnostic as well as prognostic purposes. The present study was conducted on peripheral blood samples of 115 human subjects, based on isolation of CICs. The SDS-PAGE patterns showed an up-regulated expression of 55 kDa and 23 kDa fractions in an antigens obtained from CICs of all clinical and parasitologically proven untreated visceral leishmaniasis patients before treatment (VL-BT), which ensured absolute sensitivity. However, light expressions of these bands were observed in some VL treated cases. To ascertain the prognostic value, 2D expression profiles of circulating antigens were carried out, which revealed 3 upregulated and 12 induced immunoreactive spots. Out of these, ten prominent spots were excised and subjected for enzymatic digestion to generate peptides. Mass spectrometry (MS) analysis successfully explored 20 peptides derived from kinase, kinesin, acetyl Co-A carboxylase, dynein heavy chains (cytoplasmic and axonemal/flagellar), 60S ribosomal protein, nucleoporin protein, RNA polymeraseII, protease gp63, tubulin, DNA polymerase epsilon subunit, GTP-binding protein and tyrosyl-methionyl t-RNA synthetase-like protein and 19 hypothetical protein of unknown function. Presence of L. donovani proteins in circulating antigens were further validated using anti-Ld actin and anti-α tubulin antibody. Besides, MS derived peptides confirmed its reactivity with patients' sera. Therefore, these shortlisted potential antigens can be explored as antigen-based diagnostic as well as prognostic kit.


Asunto(s)
Complejo Antígeno-Anticuerpo/sangre , Antígenos de Protozoos/inmunología , Leishmania donovani/inmunología , Leishmaniasis Visceral/sangre , Western Blotting , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Humanos , Leishmaniasis Visceral/inmunología , Espectrometría de Masa por Ionización de Electrospray
19.
Cytokine ; 96: 54-58, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28324803

RESUMEN

Visceral leishmaniasis (VL) is a disease that is associated with compromised immunity and drug un-responsiveness as well as with the emergence of drug resistance in Leishmania donovani (Ld). Ld down-modulates cellular immunity by manipulating signaling agents, including a higher expression of the adhesion molecule CD58. The expression of CD58 and CD2 on natural killer (NK) cells facilitates intercellular adhesion and signaling. The influence of drug-resistant Ld on the expression of CD58 and CD2 was addressed in this study. The mean florescence intensity (MFI) of CD58 but not of CD2 was twofold higher on CD56+ cells during VL, but was down-regulated after treatment. In addition, MFI of CD58 on CD56+ cells was further exacerbated in VL subjects who had relapsed after Ambisome or Miltefosine treatment. The same pattern of CD58 expression was also obtained upon stimulation of healthy peripheral blood mononuclear cells with Miltefosine- or Ambisome-resistant Ld. The ratio of CD56+CD58+IFN-γ+/CD56+CD58+IL-10+ cells was reduced by 6.98-fold after stimulation with Ld. Further, an antagonist to CD58 or its counter-receptor CD2 down-regulated CD56+ NK cell recruitment across a polycarbonate trans-membrane at Ld infection sites. This study reports that factors associated with drug resistance in Ld probably promote higher expression of CD58 on CD56+ cells and their migration to the infection site in association with CD2.


Asunto(s)
Anfotericina B/farmacología , Antígenos CD2/genética , Antígenos CD58/genética , Células Asesinas Naturales/inmunología , Leishmania donovani/efectos de los fármacos , Leishmaniasis Visceral/inmunología , Fosforilcolina/análogos & derivados , Antígenos CD2/antagonistas & inhibidores , Antígenos CD2/metabolismo , Antígeno CD56/genética , Resistencia a Medicamentos , Humanos , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/parasitología , Activación de Linfocitos/efectos de los fármacos , Fosforilcolina/farmacología
20.
Front Immunol ; 8: 1763, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312304

RESUMEN

Visceral leishmaniasis (VL) is one of the most neglected tropical diseases for which no vaccine exists. In spite of extensive efforts, no successful vaccine is available against this dreadful infectious disease. To support vaccine development, an immunoinformatics approach was applied to screen potential MHC class-II-restricted epitopes that can activate the immune cells. Initially, 37 epitopes derived from six stage-dependent, overexpressed antigens were predicted, which were presented by at least 26 diverse MHC class-II allele. Based on a population coverage analysis and human leukocyte antigen cross-presentation ability, six of the 37 epitopes were selected for further analysis. Stimulation with synthetic peptide alone or as a cocktail triggered intracellular IFN-γ production. Moreover, specific IgG antibodies were detected in the serum of active VL cases against P1, P4, P5, and P6 in order to evaluate the peptide effect on the humoral immune response. Additionally, most of the peptides, except P2, were found to be non-inducers of CD4+ IL-10 against both active VL as well as treated VL subjects. This finding suggests there is no role of these peptides in the pathogenesis of Leishmania. Peptide immunogenicity was validated in BALB/c mice immunized with a cocktail of synthetic peptide emulsified in complete Freund's adjuvant/incomplete Freund's adjuvant. The immunized splenocytes induced strong spleen cell proliferation upon parasite re-stimulation. Furthermore, increased IFN-γ, interleukin-12, IL-17, and IL-22 production augmented with elevated nitric oxide (NO) synthesis is thought to play a crucial role in macrophage activation. In this investigation, we identified six MHC class-II-restricted epitope hotspots of Leishmania antigens that induce CD4+ Th1 and Th17 responses, which could be used to potentiate a human universal T-epitope vaccine against VL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...