Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446117

RESUMEN

Transglutaminase 2 (TG2) is a critical cancer cell survival factor that activates several signalling pathways to foster drug resistance, cancer stem cell survival, metastasis, inflammation, epithelial-mesenchymal transition, and angiogenesis. All-trans retinoic acid (ATRA) and chemotherapy have been the standard treatments for acute promyelocytic leukaemia (APL), but clinical studies have shown that arsenic trioxide (ATO), alone or in combination with ATRA, can improve outcomes. ATO exerts cytotoxic effects in a variety of ways by inducing oxidative stress, genotoxicity, altered signal transduction, and/or epigenetic modification. In the present study, we showed that ATO increased ROS production and apoptosis ratios in ATRA-differentiated NB4 leukaemia cells, and that these responses were enhanced when TG2 was deleted. The combined ATRA + ATO treatment also increased the amount of nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, an adaptive regulator of the cellular oxidative stress response, and calpain proteolytic activity, resulting in TG2 degradation and the reduced survival of WT leukaemia cells. We further showed that the induced TG2 protein expression was degraded in the MCF-7 epithelial cell line and primary peripheral blood mononuclear cells upon ATO treatment, thereby sensitising these cell types to apoptotic signals.


Asunto(s)
Arsenicales , Leucemia Promielocítica Aguda , Humanos , Trióxido de Arsénico/farmacología , Trióxido de Arsénico/uso terapéutico , Calpaína/farmacología , Especies Reactivas de Oxígeno/farmacología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Leucocitos Mononucleares/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Tretinoina/farmacología , Apoptosis , Óxidos/farmacología , Arsenicales/farmacología
2.
Front Immunol ; 14: 1168635, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215144

RESUMEN

Introduction: Macrophages significantly contribute to the regulation of vessel formation under physiological and pathological conditions. Although the angiogenesis-regulating role of alternatively polarized macrophages is quite controversial, a growing number of evidence shows that they can participate in the later phases of angiogenesis, including vessel sprouting and remodeling or regression. However, the epigenetic and transcriptional regulatory mechanisms controlling this angiogenesis-modulating program are not fully understood. Results: Here we show that IL-4 can coordinately regulate the VEGFA-VEGFR1 (FLT1) axis via simultaneously inhibiting the proangiogenic Vegfa and inducing the antiangiogenic Flt1 expression in murine bone marrow-derived macrophages, which leads to the attenuated proangiogenic activity of alternatively polarized macrophages. The IL-4-activated STAT6 and IL-4-STAT6 signaling pathway-induced EGR2 transcription factors play a direct role in the transcriptional regulation of the Vegfa-Flt1 axis. We demonstrated that this phenomenon is not restricted to the murine bone marrow-derived macrophages, but can also be observed in different murine tissue-resident macrophages ex vivo and parasites-elicited macrophages in vivo with minor cell type-specific differences. Furthermore, IL-4 exposure can modulate the hypoxic response of genes in both murine and human macrophages leading to a blunted Vegfa/VEGFA and synergistically induced Flt1/FLT1 expression. Discussion: Our findings establish that the IL-4-activated epigenetic and transcriptional program can determine angiogenesis-regulating properties in alternatively polarized macrophages under normoxic and hypoxic conditions.


Asunto(s)
Interleucina-4 , Factor A de Crecimiento Endotelial Vascular , Humanos , Ratones , Animales , Interleucina-4/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Regulación de la Expresión Génica , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Cell Death Dis ; 14(3): 217, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977701

RESUMEN

Atypically expressed transglutaminase 2 (TG2) has been identified as a poor prognostic factor in a variety of cancers. In this study, we evaluated the contribution of TG2 to the prolonged cell survival of differentiated acute promyelocytic leukaemia (APL) cells in response to the standard treatment with combined retinoic acid (ATRA) and arsenic trioxide (ATO). We report that one advantage of ATRA + ATO treatment compared to ATRA alone diminishes the amount of activated and non-activated CD11b/CD18 and CD11c/CD18 cell surface integrin receptors. These changes suppress ATRA-induced TG2 docking on the cytosolic part of CD18 ß2-integrin subunits and reduce cell survival. In addition, TG2 overexpresses and hyperactivates the phosphatidylinositol-3-kinase (PI3K), phospho-AKT S473, and phospho-mTOR S2481 signalling axis. mTORC2 acts as a functional switch between cell survival and death by promoting the full activation of AKT. We show that TG2 presumably triggers the formation of a signalosome platform, hyperactivates downstream mTORC2-AKT signalling, which in turn phosphorylates and inhibits the activity of FOXO3, a key pro-apoptotic transcription factor. In contrast, the absence of TG2 restores basic phospho-mTOR S2481, phospho-AKT S473, PI3K, and PTEN expression and activity, thereby sensitising APL cells to ATO-induced cell death. We conclude, that atypically expressed TG2 may serve as a hub, facilitating signal transduction via signalosome formation by the CD18 subunit with both PI3K hyperactivation and PTEN inactivation through the PI3K-PTEN cycle in ATRA-treated APL cells.


Asunto(s)
Arsenicales , Leucemia Promielocítica Aguda , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasa , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Trióxido de Arsénico , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Tretinoina/farmacología , Serina-Treonina Quinasas TOR , Muerte Celular , Diana Mecanicista del Complejo 2 de la Rapamicina , Integrinas , Arsenicales/farmacología , Fosfohidrolasa PTEN/genética
4.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36323312

RESUMEN

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Asunto(s)
Interleucina-4 , Lipopolisacáridos , Ratones , Animales , Interleucina-4/metabolismo , Lipopolisacáridos/metabolismo , Ligandos , Epigenómica , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Epigénesis Genética , FN-kappa B/metabolismo
5.
J Immunol ; 207(10): 2489-2500, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654688

RESUMEN

IL-15 plays a pivotal role in the long-term survival of T cells and immunological memory. Its receptor consists of three subunits (IL-15Rα, IL-2/15Rß, and γc). IL-15 functions mainly via trans-presentation (TP), during which an APC expressing IL-15 bound to IL-15Rα presents the ligand to the ßγc receptor-heterodimer on a neighboring T/NK cell. To date, no direct biophysical evidence for the intercellular assembly of the IL-15R heterotrimer exists. Ag presentation (AP), the initial step of T cell activation, is also based on APC-T cell interaction. We were compelled to ask whether AP has any effect on IL-15 TP or whether they are independent processes. In our human Raji B cell-Jurkat T cell model system, we monitored inter-/intracellular protein interactions upon formation of IL-15 TP and AP receptor complexes by Förster resonance energy transfer measurements. We detected enrichment of IL-15Rα and IL-2/15Rß at the synapse and positive Förster resonance energy transfer efficiency if Raji cells were pretreated with IL-15, giving direct biophysical evidence for IL-15 TP. IL-15Rα and MHC class II interacted and translocated jointly to the immunological synapse when either ligand was present, whereas IL-2/15Rß and CD3 moved independently of each other. IL-15 TP initiated STAT5 phosphorylation in Jurkat cells, which was not further enhanced by AP. Conversely, IL-15 treatment slightly attenuated Ag-induced phosphorylation of the CD3ζ chain. Our studies prove that in our model system, IL-15 TP and AP can occur independently, and although AP enhances IL-15R assembly, it has no significant effect on IL-15 signaling during TP. Thus, IL-15 TP can be considered an autonomous, Ag-independent process.


Asunto(s)
Presentación de Antígeno/inmunología , Interleucina-15/inmunología , Activación de Linfocitos/inmunología , Línea Celular , Humanos
6.
Cancers (Basel) ; 12(3)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168763

RESUMEN

Randomized trials in acute promyelocytic leukemia patients have shown that treatment with a combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) is superior in efficacy to monotherapy, with significantly decreased mortality. So far, there are little data available to explain the success of the ATRA and ATO combination treatment in molecular terms. We showed that ATRA- and ATO-treated cells had the same capacity for superoxide production, which was reduced by two-thirds in the combined treatment. Secreted inflammatory biomarkers (monocyte chemoattractant protein-1 [MCP-1], interleukin-1 beta [IL-1ß] and tumor necrosis factor-α [TNF-α]) were significantly decreased and were further reduced in a transglutaminase 2 (TG2) expression-dependent manner. The amount of secreted TNF-α in the supernatant of NB4 TG2 knockout cells was close to 50 times lower than in ATRA-treated differentiated wild-type NB4 cells. The irreversible inhibitor of TG2 NC9 not only decreased reactive oxygen species production 28-fold, but decreased the concentration of MCP-1, IL-1ß and TNF-α 8-, 15- and 61-fold, respectively in the combined ATRA + ATO-treated wild-type NB4 cell culture. We propose that atypical expression of TG2 leads to the generation of inflammation, which thereby serves as a potential target for the prevention of differentiation syndrome.

7.
Proc Natl Acad Sci U S A ; 116(42): 21120-21130, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570576

RESUMEN

Interleukin-2 (IL-2) and IL-15 play pivotal roles in T cell activation, apoptosis, and survival, and are implicated in leukemias and autoimmune diseases. Their heterotrimeric receptors share their ß- and γc-chains, but have distinct α-chains. Anti-IL-2Rα (daclizumab) therapy targeting cell surface-expressed receptor subunits to inhibit T cell proliferation has only brought limited success in adult T cell leukemia/lymphoma (ATL) and in multiple sclerosis. We asked whether IL-2R subunits could already preassemble and signal efficiently in the endoplasmic reticulum (ER) and the Golgi. A combination of daclizumab and anti-IL-2 efficiently blocked IL-2-induced proliferation of IL-2-dependent wild-type (WT) ATL cells but not cells transfected with IL-2, suggesting that in IL-2-producing cells signaling may already take place before receptors reach the cell surface. In the Golgi fraction isolated from IL-2-producing ATL cells, we detected by Western blot phosphorylated Jak1, Jak3, and a phosphotyrosine signal attributed to the γc-chain, which occurred at much lower levels in the Golgi of WT ATL cells. We expressed EGFP- and mCherry-tagged receptor chains in HeLa cells to study their assembly along the secretory pathway. Confocal microscopy, Förster resonance energy transfer, and imaging fluorescence cross-correlation spectroscopy analysis revealed partial colocalization and molecular association of IL-2 (and IL-15) receptor chains in the ER/Golgi, which became more complete in the plasma membrane, further confirming our hypothesis. Our results define a paradigm of intracellular autocrine signaling and may explain resistance to antagonistic antibody therapies targeting receptors at the cell surface.


Asunto(s)
Proliferación Celular/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Interleucina-2/metabolismo , Línea Celular Tumoral , Células HeLa , Humanos , Interleucina-15/metabolismo , Janus Quinasa 1/metabolismo , Janus Quinasa 3/metabolismo , Receptores de Interleucina-15/metabolismo , Transducción de Señal/fisiología
8.
Haematologica ; 104(3): 505-515, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30237268

RESUMEN

Differentiation syndrome (DS) is a life-threatening complication arising during retinoid treatment of acute promyelocytic leukemia (APL). Administration of all-trans retinoic acid leads to significant changes in gene expression, among the most induced of which is transglutaminase 2, which is not normally expressed in neutrophil granulocytes. To evaluate the pathophysiological function of transglutaminase 2 in the context of immunological function and disease outcomes, such as excessive superoxide anion, cytokine, and chemokine production in differentiated NB4 cells, we used an NB4 transglutaminase knock-out cell line and a transglutaminase inhibitor, NC9, which inhibits both transamidase- and guanosine triphosphate-binding activities, to clarify the contribution of transglutaminase to the development of potentially lethal DS during all-trans retinoic acid treatment of APL. We found that such treatment not only enhanced cell-surface expression of CD11b and CD11c but also induced high-affinity states; atypical transglutaminase 2 expression in NB4 cells activated the nuclear factor kappa (κ)-light-chain-enhancer of the activated B-cell pathway, driving pathogenic processes with an inflammatory cascade through the expression of numerous cytokines, including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1ß), and monocyte chemoattractant protein 1. NC9 decreased the amount of transglutaminase 2, p65/RelA, and p50 in differentiated NB4 cells and their nuclei, leading to attenuated inflammatory cytokine synthesis. NC9 significantly inhibits transglutaminase 2 nuclear translocation but accelerates its proteasomal breakdown. This study demonstrates that transglutaminase 2 expression induced by all-trans retinoic acid treatment reprograms inflammatory signaling networks governed by nuclear factor κ-light-chain-enhancer of activated B-cell activation, resulting in overexpression of TNF-α and IL-1ß in differentiating APL cells, suggesting that atypically expressed transglutaminase 2 is a promising target for leukemia treatment.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al GTP/genética , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Transglutaminasas/genética , Tretinoina/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antígenos CD11/genética , Antígenos CD11/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/metabolismo , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Mediadores de Inflamación/metabolismo , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/tratamiento farmacológico , Antígeno de Macrófago-1/genética , Antígeno de Macrófago-1/metabolismo , FN-kappa B/genética , Estadificación de Neoplasias , Fagocitosis , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas/deficiencia , Transglutaminasas/metabolismo , Tretinoina/uso terapéutico
9.
Ann Bot ; 110(4): 797-808, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22819947

RESUMEN

BACKGROUND AND AIMS: Microcystin-LR (MCY-LR) is a cyanobacterial toxin, a specific inhibitor of type 1 and 2A protein phosphatases (PP1 and PP2A) with significant impact on aquatic ecosystems. It has the potential to alter regulation of the plant cell cycle. The aim of this study was improved understanding of the mitotic alterations induced by cyanotoxin in Vicia faba, a model organism for plant cell biology studies. METHODS: Vicia faba seedlings were treated over the long and short term with MCY-LR purified in our laboratory. Short-term treatments were performed on root meristems synchronized with hydroxylurea. Sections of lateral root tips were labelled for chromatin, phosphorylated histone H3 and ß-tubulin via histochemical and immunohistochemical methods. Mitotic activity and the occurrence of mitotic alterations were detected and analysed by fluorescence microscopy. The phosphorylation state of histone H3 was studied by Western blotting. KEY RESULTS: Long-term MCY-LR exposure of lateral root tip meristems increased the percentage of either early or late mitosis in a concentration-dependent manner. We observed hypercondensed chromosomes and altered sister chromatid segregation (lagging chromosomes) leading to the formation of micronuclei, accompanied by the formation of disrupted, multipolar and monopolar spindles, disrupted phragmoplasts and the hyperphosphorylation of histone H3 at Ser10. Short-term MCY-LR treatment of synchronized cells showed that PP1 and PP2A inhibition delayed the onset of anaphase at 1 µg mL(-1) MCY-LR, accelerated cell cycle at 10 µg mL(-1) MCY-LR and induced the formation of lagging chromosomes. In this case mitotic microtubule alterations were not detected, but histone H3 was hyperphosphorylated. CONCLUSIONS: MCY-LR delayed metaphase-anaphase transition. Consequently, it induced aberrant chromatid segregation and micronucleus formation that could be associated with both H3 hyperphosphorylation and altered microtubule organization. However, these two phenomena seemed to be independent. The toxin may be a useful tool in the study of plant cell cycle regulation.


Asunto(s)
Cromatina/efectos de los fármacos , Microcistinas/farmacología , Microcystis/química , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Vicia faba/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Cromatina/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Histonas/metabolismo , Toxinas Marinas , Meristema/efectos de los fármacos , Meristema/genética , Meristema/metabolismo , Meristema/ultraestructura , Microcistinas/aislamiento & purificación , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosforilación , Proteínas de Plantas/antagonistas & inhibidores , Vicia faba/genética , Vicia faba/metabolismo , Vicia faba/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...