Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
2.
Int J Food Sci ; 2022: 2577222, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252436

RESUMEN

Baobab fruit demand has been on the rise in the recent past, and in an attempt to match the demand, farmers and middlemen are forced to harvest immature fruits which are not fully dried. To ensure an acceptable moisture content, baobab fruits are subjected to solar drying, which is a slow process and often carried out in open and unhygienic conditions raising safety concerns. This study was conducted to investigate the microbial and aflatoxin contamination levels in ready-to-eat baobab products from selected formal and informal processors in specific counties of Kenya. Selected processed baobab products were sampled randomly from formal and informal processors and analyzed for the total aerobic count, Enterobacteriaceae, yeast and molds, ergosterol, aflatoxins, moisture, and water activity. The moisture and water activity of baobab pulp and candies from formal processors ranged between 7.73% and 15.06% and 0.532 and 0.740 compared to those from informal processors which ranged from 10.50% to 23.47% and 0.532 to 0.751, respectively. In this study, baobab pulp from formal processors had significantly (p = 0.0008, 0.0006) lower Enterobacteriaceae and yeast and molds loads (0.7 ± 0.29 and 3.1 ± 0.38 log 10 CFU/g, respectively) than pulp from informal processors (3.1 ± 0.70 and 5.3 ± 0.11 log 10 CFU/g, respectively). Similarly, the Enterobacteriaceae counts of candies from formal processors (nondetectable) were considerably lower (p = 0.015) than those from informal processors (1.8 ± 0.56 log 10 CFU/g). The ergosterol content in these baobab product samples ranged between 0.46 and 1.92 mg/100 g while the aflatoxin content ranged between 3.93 and 11.09 × 103 µg/kg, respectively. Fungal and aflatoxin contamination was detected in 25% and 5% of pulp from formal and informal processors, respectively, and in 5% of candies from informal processors. Microbial contamination in processed baobab products shows an unhygienic processing environment while the fungal and aflatoxin contamination may indicate poor postharvest handling, transport, and storage conditions of baobab fruits along the baobab value chain.

3.
Chemosphere ; 286(Pt 1): 131620, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34303902

RESUMEN

Methoxylated bromodiphenyl ethers (MeO-BDEs), marine natural products, can be demethylated by cytochrome P450 to produce hydroxylated bromodiphenyl ethers (OH-BDEs), potentially toxic metabolites that are also formed by hydroxylation of BDE flame retardants. The OH-BDEs may be detoxified by glucuronidation and sulfonation. This study examined the demethylation of 6-MeO-BDE47, 2'-MeO-BDE68 and 4'-MeO-BDE68, in hepatic microsomes from the red snapper, Lutjanus campechanus, a marine fish likely to be exposed naturally to MeO-BDEs, and the channel catfish, Ictalurus punctatus, a freshwater fish in which pathways of xenobiotic biotransformation have been studied. We further studied the glucuronidation and sulfonation of the resulting OH-BDEs as well as of 6-OH-2'-MeO-BDE68 in hepatic microsomes and cytosol fractions of these fish. The three studied biotransformation pathways were active in both species, with high individual variability. The range of activities overlapped in the two species. Demethylation of MeO-BDEs, studied in the concentration range 10-500 µM, followed Michaelis-Menten kinetics in both fish species, however enzyme efficiencies were low, ranging from 0.024 to 0.334 µL min.mg protein. Conjugation of the studied OH-BDEs followed Michaelis-Menten kinetics in the concentration ranges 1-50 µM (glucuronidation) or 2.5-100 µM (sulfonation). These OH-BDEs were readily glucuronidated and sulfonated in the fish livers of both species, with enzyme efficiencies one to three orders of magnitude higher than for demethylation of the precursor MeO-BDEs. The relatively low efficiencies of demethylation of the MeO-BDEs, compared with higher efficiencies for OH-BDE conjugation, suggests that MeO-BDEs are more likely than OH-BDEs to bioaccumulate in tissues of exposed fish.


Asunto(s)
Ictaluridae , Animales , Desmetilación , Agua Dulce , Éteres Difenilos Halogenados/análisis , Hígado/metabolismo , Microsomas Hepáticos
4.
Methods Mol Biol ; 2342: 285-300, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34272699

RESUMEN

The cytosolic sulfotransferase (SULT) enzymes are found in human liver, kidney, intestine, and other tissues. These enzymes catalyze the transfer of the -SO3 group from 3'-phospho-adenosyl-5'-phosphosulfate (PAPS) to a nucleophilic hydroxyl or amine group in a drug substrate. SULTs are stable as dimers, with a highly conserved dimerization domain near the C-terminus of the protein. Crystal structures have revealed flexible loop regions in the native proteins, one of which, located near the dimerization domain, is thought to form a gate that changes position once PAPS is bound to the PAPS-binding site and modulates substrate access and enzyme properties. There is also evidence that oxidation and reduction of certain cysteine residues reversibly regulate the binding of the substrate and PAPS or PAP to the enzyme thus modulating sulfonation. Because SULT enzymes have two substrates, the drug and PAPS, it is common to report apparent kinetic constants with either the drug or the PAPS varied while the other is kept at a constant concentration. The kinetics of product formation can follow classic Michaelis-Menten kinetics, typically over a narrow range of substrate concentrations. Over a wide range of substrate concentrations, it is common to observe partial or complete substrate inhibition with SULT enzymes. This chapter describes the function, tissue distribution, structural features, and properties of the human SULT enzymes and presents examples of enzyme kinetics with different substrates.


Asunto(s)
Sulfotransferasas/química , Sulfotransferasas/metabolismo , Xenobióticos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Humanos , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Distribución Tisular , Xenobióticos/química
5.
Drug Metab Dispos ; 48(11): 1224-1230, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32873592

RESUMEN

Dichloroacetate (DCA) is an investigational drug that is used in the treatment of various congenital and acquired disorders of energy metabolism. Although DCA is generally well tolerated, some patients experience peripheral neuropathy, a side effect more common in adults than children. Repetitive DCA dosing causes downregulation of its metabolizing enzyme, glutathione transferase zeta 1 (GSTZ1), which is also critical in the detoxification of maleylacetoacetate and maleylacetone. GSTZ1 (-/-) knockout mice show upregulation of glutathione transferases (GSTs) and antioxidant enzymes as well as an increase in the ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH), suggesting GSTZ1 deficiency causes oxidative stress. We hypothesized that DCA-mediated depletion of GSTZ1 causes oxidative stress and used the rat to examine induction of GSTs and antioxidant enzymes after repeated DCA exposure. We determined the expression of alpha, mu, pi, and omega class GSTs, NAD(P)H dehydrogenase [quinone] 1 (NQO1), gamma-glutamylcysteine ligase complex (GCLC), and glutathione synthetase (GSS). GSH and GSSG levels were measured by liquid chromatography-tandem mass spectrometry. Enzyme activity was measured in hepatic cytosol using 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene, and 2,6-dichloroindophenol as substrates. In comparison with acetate-treated controls, DCA dosing increased the relative expression of GSTA1/A2 irrespective of rodent age, whereas only adults displayed higher levels of GSTM1 and GSTO1. NQO1 expression and activity were higher in juveniles after DCA dosing. GSH concentrations were increased by DCA in adults, but the GSH:GSSG ratio was not changed. Levels of GCLC and GSS were higher and lower, respectively, in adults treated with DCA. We conclude that DCA-mediated depletion of GSTZ1 causes oxidative stress and promotes the induction of antioxidant enzymes that may vary between age groups. SIGNIFICANCE STATEMENT: Treatment with the investigational drug, dichloroacetate (DCA), results in loss of glutathione transferase zeta 1 (GSTZ1) and subsequent increases in body burden of the electrophilic tyrosine metabolites, maleylacetoacetate and maleylacetone. Loss of GSTZ1 in genetically modified mice is associated with induction of glutathione transferases and alteration of the ratio of oxidized to reduced glutathione. Therefore, we determined whether pharmacological depletion of GSTZ1 through repeat administration of DCA produced similar changes in the liver, which could affect responses to other drugs and toxicants.


Asunto(s)
Ácido Dicloroacético/efectos adversos , Glutatión Transferasa/metabolismo , Hígado/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Administración Oral , Adulto , Factores de Edad , Animales , Niño , Ácido Dicloroacético/administración & dosificación , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Femenino , Glutatión/análisis , Glutatión/metabolismo , Glutatión Transferasa/antagonistas & inhibidores , Humanos , Hígado/enzimología , Masculino , Enfermedades Mitocondriales/tratamiento farmacológico , Modelos Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Regulación hacia Arriba/efectos de los fármacos
6.
Drug Metab Dispos ; 48(11): 1217-1223, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32873593

RESUMEN

Glutathione transferase zeta 1 (GSTZ1), expressed in liver and several extrahepatic tissues, catalyzes dechlorination of dichloroacetate (DCA) to glyoxylate. DCA inactivates GSTZ1, leading to autoinhibition of its metabolism. DCA is an investigational drug for treating several congenital and acquired disorders of mitochondrial energy metabolism, including cancer. The main adverse effect of DCA, reversible peripheral neuropathy, is more common in adults treated long-term than in children, who metabolize DCA more quickly after multiple doses. One dose of DCA to Sprague Dawley rats reduced GSTZ1 expression and activity more in liver than in extrahepatic tissues; however, the effects of multiple doses of DCA that mimic its therapeutic use have not been studied. Here, we examined the expression and activity of GSTZ1 in cytosol and mitochondria of liver, kidney, heart, and brain 24 hours after completion of 8-day oral dosing of 100 mg/kg per day sodium DCA to juvenile and adult Sprague Dawley rats. Activity was measured with DCA and with 1,2-epoxy-3-(4-nitrophenoxy)propane (EPNPP), reported to be a GSTZ1-selective substrate. In DCA-treated rats, liver retained higher expression and activity of GSTZ1 with DCA than other tissues, irrespective of rodent age. DCA-treated juvenile rats retained more GSTZ1 activity with DCA than adults. Consistent with this finding, there was less measurable DCA in tissues of juvenile than adult rats. DCA-treated rats retained activity with EPNPP, despite losing over 98% of GSTZ1 protein. These data provide insight into the differences between children and adults in DCA elimination under a therapeutic regimen and confirm that the liver contributes more to DCA metabolism than other tissues. SIGNIFICANCE STATEMENT: Dichloroacetate (DCA) is one of few drugs exhibiting higher clearance from children than adults, after repeated doses, for reasons that are unclear. We hypothesized that juveniles retain more glutathione transferase zeta 1 (GSTZ1) than adults in tissues after multiple DCA doses and found this was the case for liver and kidney, with rat as a model to assess GSTZ1 protein expression and activity with DCA. Although 1,2-epoxy-3-(4-nitrophenoxy)propane was reported to be a selective GSTZ1 substrate, its activity was not reduced in concert with GSTZ1 protein.


Asunto(s)
Ácido Dicloroacético/farmacocinética , Glutatión Transferasa/antagonistas & inhibidores , Hígado/efectos de los fármacos , Adulto , Factores de Edad , Animales , Niño , Ácido Dicloroacético/administración & dosificación , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Compuestos Epoxi/farmacocinética , Femenino , Glutatión Transferasa/metabolismo , Humanos , Hígado/metabolismo , Masculino , Enfermedades Mitocondriales/tratamiento farmacológico , Modelos Animales , Nitrofenoles/farmacocinética , Ratas
7.
Am J Med Genet A ; 182(10): 2403-2408, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32783357

RESUMEN

Short-rib polydactyly syndromes are a heterogeneous group of disorders characterized by narrow thorax with short ribs, polydactyly and often other visceral and skeletal malformations. To date there have only been six reported patients with homozygous and compound heterozygous variants in IFT81, causing a short-rib thoracic dysplasia, with, or without, polydactyly (SRTD19: OMIM 617895). IFT81 is a protein integral to the core of the intraflagellar transport complex B (IFT-B), which is involved in anterograde transport in the cilium. We describe the case of a male infant with compound heterozygous variants in IFT81, who presented with short long bones, a narrow thorax, polydactyly, and multiple malformations. Three novel clinical features are reported including complete situs inversus, micropenis, and rectal atresia, which have not previously been associated with variants in IFT81. We reviewed the literature and identified the most consistent clinical features associated with this rare ciliopathy syndrome. We postulate that dolichocephaly and sagittal craniosynostosis may be associated with this condition, and provide a clue to considering IFT81 as the causative gene when deciphering complex ciliopathies.


Asunto(s)
Ciliopatías/genética , Craneosinostosis/genética , Proteínas Musculares/genética , Síndrome de Costilla Pequeña y Polidactilia/genética , Cilios/patología , Ciliopatías/diagnóstico , Ciliopatías/fisiopatología , Craneosinostosis/diagnóstico , Craneosinostosis/fisiopatología , Homocigoto , Humanos , Recién Nacido , Masculino , Mutación/genética , Fenotipo , Síndrome de Costilla Pequeña y Polidactilia/diagnóstico , Síndrome de Costilla Pequeña y Polidactilia/fisiopatología
8.
Drug Metab Dispos ; 48(7): 563-569, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32357971

RESUMEN

Previous work has shown that hepatic levels of human glutathione transferase zeta 1 (GSTZ1) protein, involved in tyrosine catabolism and responsible for metabolism of the investigational drug dichloroacetate, increase in cytosol after birth before reaching a plateau around age 7. However, the mechanism regulating this change of expression is still unknown, and previous studies showed that GSTZ1 mRNA levels did not correlate with GSTZ1 protein expression. In this study, we addressed the hypothesis that microRNAs (miRNAs) could regulate expression of GSTZ1. We obtained liver samples from donors aged less than 1 year or older than 13 years and isolated total RNA for use in a microarray to identify miRNAs that were downregulated in the livers of adults compared with children. From a total of 2578 human miRNAs tested, 63 miRNAs were more than 2-fold down-regulated in adults, of which miR-376c-3p was predicted to bind to the 3' untranslated region of GSTZ1 mRNA. There was an inverse correlation of miR-376c-3p and GSTZ1 protein expression in the liver samples. Using cell culture, we confirmed that miR-376c-3p could downregulate GSTZ1 protein expression. Our findings suggest that miR-376c-3p prevents production of GSTZ1 through inhibition of translation. These experiments further our understanding of GSTZ1 regulation. Furthermore, our array results provide a database resource for future studies on mechanisms regulating human hepatic developmental expression. SIGNIFICANCE STATEMENT: Hepatic glutathione transferase zeta 1 (GSTZ1) is responsible for metabolism of the tyrosine catabolite maleylacetoacetate as well as the investigational drug dichloroacetate. Through examination of microRNA (miRNA) expression in liver from infants and adults and studies in cells, we showed that expression of GSTZ1 is controlled by miRNA. This finding has application to the dosing regimen of the drug dichloroacetate. The miRNA expression profiles are provided and will prove useful for future studies of drug-metabolizing enzymes in infants and adults.


Asunto(s)
Envejecimiento/genética , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Glutatión Transferasa/genética , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Femenino , Perfilación de la Expresión Génica , Glutatión Transferasa/metabolismo , Células HEK293 , Células Hep G2 , Eliminación Hepatobiliar/genética , Humanos , Lactante , Recién Nacido , Hígado/enzimología , Hígado/crecimiento & desarrollo , Masculino , Persona de Mediana Edad , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Adulto Joven
9.
BMC Vet Res ; 16(1): 107, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32252763

RESUMEN

BACKGROUND: Mycoplasmas primarily cause respiratory or urogenital tract infections impacting avian, bovine, canine, caprine, murine, and reptilian hosts. In animal husbandry, mycoplasmas cause reduced feed-conversion, decreased egg production, arthritis, hypogalactia or agalactia, increased condemnations, culling, and mortality in some cases. Antibiotics reduce transmission and mitigate clinical signs; however, concerning levels of antibiotic resistance in Mycoplasma gallisepticum and M. capricolum isolates exist. To address these issues, we evaluated the minimum inhibitory concentrations (MICs) of halogenated phenazine and quinoline compounds, an N-arylated NH125 analogue, and triclosan against six representative veterinary mycoplasmas via microbroth or agar dilution methods. Thereafter, we evaluated the minimum bactericidal concentration (MBC) of efficacious drugs. RESULTS: We identified several compounds with MICs ≤25 µM against M. pulmonis (n = 5), M. capricolum (n = 4), M. gallisepticum (n = 3), M. alligatoris (n = 3), M. agassizii (n = 2), and M. canis (n = 1). An N-arylated NH125 analogue, compound 21, served as the most efficacious, having a MIC ≤25 µM against all mycoplasmas tested, followed by two quinolines, nitroxoline (compound 12) and compound 20, which were effective against four and three mycoplasma type strains, respectively. Nitroxoline exhibited bactericidal activity among all susceptible mycoplasmas, and compound 21 exhibited bactericidal activity when the MBC was able to be determined. CONCLUSIONS: These findings highlight a number of promising agents from novel drug classes with potential applications to treat veterinary mycoplasma infections and present the opportunity to evaluate preliminary pharmacokinetic indices using M. pulmonis in rodents as an animal model of human infection.


Asunto(s)
Antibacterianos/farmacología , Imidazoles/farmacología , Mycoplasma/efectos de los fármacos , Fenazinas/farmacología , Quinolinas/farmacología , Pruebas de Sensibilidad Microbiana
10.
Drug Metab Dispos ; 49(6): 451-458, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811107

RESUMEN

Sodium dichloroacetate (DCA) is an investigational drug that shows promise in the treatment of acquired and congenital mitochondrial diseases, including myocardial ischemia and failure. DCA increases glucose utilization and decreases lactate production, so it may also have clinical utility in reducing lactic acidosis during labor. In the current study, we tested the ability of DCA to cross the placenta and be measured in fetal blood after intravenous administration to pregnant ewes during late gestation and labor. Sustained administration of DCA to the mother over 72 hours achieved pharmacologically active levels of DCA in the fetus and decreased fetal plasma lactate concentrations. Multicompartmental pharmacokinetics modeling indicated that drug metabolism in the fetal and maternal compartments is best described by the DCA inhibiting lactate production in both compartments, consistent with our finding that the hepatic expression of the DCA-metabolizing enzyme glutathione transferase zeta1 was decreased in the ewes and their fetuses exposed to the drug. We provide the first evidence that DCA can cross the placental compartment to enter the fetal circulation and inhibit its own hepatic metabolism in the fetus, leading to increased DCA concentrations and decreased fetal plasma lactate concentrations during its parenteral administration to the mother. SIGNIFICANCE STATEMENT: This study was the first to administer sodium dichloroacetate (DCA) to pregnant animals (sheep). It showed that DCA administered to the mother can cross the placental barrier and achieve concentrations in fetus sufficient to decrease fetal lactate concentrations. Consistent with findings reported in other species, DCA-mediated inhibition of glutathione transferase zeta1 was also observed in ewes, resulting in reduced metabolism of DCA after prolonged administration.


Asunto(s)
Ácido Dicloroacético/farmacología , Sangre Fetal/química , Glutatión Transferasa , Acidosis Láctica/tratamiento farmacológico , Acidosis Láctica/metabolismo , Animales , Drogas en Investigación/farmacología , Femenino , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/metabolismo , Intercambio Materno-Fetal/fisiología , Redes y Vías Metabólicas/efectos de los fármacos , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Complicaciones del Trabajo de Parto/tratamiento farmacológico , Complicaciones del Trabajo de Parto/metabolismo , Circulación Placentaria/fisiología , Embarazo , Ovinos
11.
Chem Res Toxicol ; 32(10): 2042-2052, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31524376

RESUMEN

Dichloroacetate (DCA) has potential for treating mitochondrial disorders and cancer by activating the mitochondrial pyruvate dehydrogenase complex. Repeated dosing of DCA results in reduced drug clearance due to inactivation of glutathione transferase ζ1 (GSTZ1), its metabolizing enzyme. We investigated the time-course of inactivation of GSTZ1 in hepatic cytosol and mitochondria after one oral dose of 100 mg/kg DCA to female Sprague-Dawley rats aged 4 weeks (young) and 52 weeks (adult) as models for children and adults, respectively. GSTZ1 activity with both DCA and an endogenous substrate, maleylacetone (MA), as well as GSTZ1 protein expression were rapidly reduced in cytosol from both ages following DCA treatment. In mitochondria, loss of GSTZ1 protein and activity with DCA were even more rapid. The cytosolic in vivo half-lives of the loss of GSTZ1 activity with DCA were 1.05 ± 0.03 and 0.82 ± 0.02 h (mean ± S.D., n = 6) for young and adult rats, respectively, with inactivation significantly more rapid in adult rats, p < 0.001. The mitochondrial inactivation half-lives were similar in young (0.57 ± 0.02 h) and adult rats (0.54 ± 0.02 h) and were significantly (p < 0.0001) shorter than cytosolic inactivation half-lives. By 24 h after DCA administration, activity and expression remained at 10% or less than control values. The in vitro GSTZ1 inactivation half-lives following incubation with 2 mM DCA in the presence of physiological chloride (Cl-) concentrations (cytosol = 44 mM, mitochondria = 1-2 mM) exhibited marked differences between subcellular fractions, being 3 times longer in the cytosol than in the mitochondria, regardless of age, suggesting that the lower Cl- concentration in mitochondria explained the faster degradation of GSTZ1. These results demonstrate for the first time that rat mitochondrial GSTZ1 is more readily inactivated by DCA than cytosolic GSTZ1, and cytosolic GSTZ1 is inactivated more rapidly in adult than young rats.


Asunto(s)
Citosol/enzimología , Ácido Dicloroacético/farmacología , Ácido Dicloroacético/toxicidad , Glutatión Transferasa/antagonistas & inhibidores , Hígado/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Ácido Dicloroacético/administración & dosificación , Femenino , Glutatión Transferasa/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Ratas , Ratas Sprague-Dawley
12.
Int Rev Neurobiol ; 145: 211-238, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31208525

RESUMEN

Dichloroacetate (DCA) has been the focus of research by both environmental toxicologists and biomedical scientists for over 50 years. As a product of water chlorination and a metabolite of certain industrial chemicals, DCA is ubiquitous in our biosphere at low µg/kg body weight daily exposure levels without obvious adverse effects in humans. As an investigational drug for numerous congenital and acquired diseases, DCA is administered orally or parenterally, usually at doses of 10-50mg/kg per day. As a therapeutic, its principal mechanism of action is to inhibit pyruvate dehydrogenase kinase (PDK). In turn, PDK inhibits the key mitochondrial energy homeostat, pyruvate dehydrogenase complex (PDC), by reversible phosphorylation. By blocking PDK, DCA activates PDC and, consequently, the mitochondrial respiratory chain and ATP synthesis. A reversible sensory/motor peripheral neuropathy is the clinically limiting adverse effect of chronic DCA exposure and experimental data implicate the Schwann cell as a toxicological target. It has been postulated that stimulation of PDC and respiratory chain activity by DCA in normally glycolytic Schwann cells causes uncompensated oxidative stress from increased reactive oxygen species production. Additionally, the metabolism of DCA interferes with the catabolism of the amino acids phenylalanine and tyrosine and with heme synthesis, resulting in accumulation of reactive molecules capable of forming adducts with DNA and proteins and also resulting in oxidative stress. Preliminary evidence in rodent models of peripheral neuropathy suggest that DCA-induced neurotoxicity may be mitigated by naturally occurring antioxidants and by a specific class of muscarinic receptor antagonists. These findings generate a number of testable hypotheses regarding the etiology and treatment of DCA peripheral neuropathy.


Asunto(s)
Ácido Dicloroacético/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Animales , Antioxidantes/farmacología , Ácido Dicloroacético/farmacocinética , Ácido Dicloroacético/farmacología , Ácido Dicloroacético/uso terapéutico , Humanos , Antagonistas Muscarínicos/farmacología , Enfermedades del Sistema Nervioso Periférico/prevención & control
13.
Chemosphere ; 226: 132-139, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30925405

RESUMEN

Hydroxylated bromodiphenyl ethers (OH-BDEs) can arise from monooxygenation of anthropogenic BDEs or through natural biosynthetic processes in marine organisms, and several OH-BDEs have been shown to be toxic. OH-BDEs are expected to form sulfate and glucuronide conjugates that are readily excreted, however there is little information on these pathways. We examined the human hepatic glucuronidation and sulfonation of 6-OH-BDE47, 2-OH-BDE68, 4-OH-BDE68 and 2-OH-6'methoxy-BDE68. Human liver microsomes and cytosol were from de-identified female and male donors aged 31 to 75 under an exempt protocol. Recombinant human SULT1A1, 1B1, 1E1 and 2A1 enzymes were prepared from bacterial expression systems. Sulfonation and glucuronidation of each OH-BDE were studied using radiolabeled co-substrates, 3'phosphoadenosine-5'phospho-35S-sulfate or uridine diphospho-ß-D-14C-glucuronic acid in order to quantify the sulfated or glucuronidated products. The OH-BDEs studied were more efficiently glucuronidated than sulfonated. Of the compounds studied, 2-OH-BDE68 was the most readily conjugated, and exhibited an efficiency (Vmax/KM) of glucuronidation of 0.274 ±â€¯0.125 mL/min/mg protein, mean ±â€¯S.D., n = 3, while that for sulfonation was 0.179 ±â€¯0.030 mL/min/mg protein. For both pathways, all Km values were in the low µM range. Studies with human SULT enzymes showed that sulfonation of these four substrates was readily catalyzed by SULT1B1 and SULT1E1. Much lower activity was found with SULT1A1 and SULT2A1. Assuming that the glucuronide and sulfate conjugates are non-toxic and readily excreted, as is the case for most such conjugates, these studies suggest that OH-BDEs should not accumulate in people to the same extent as the parent BDEs.


Asunto(s)
Éteres/química , Glucurónidos/química , Hígado/metabolismo , Bifenilos Polibrominados/química , Sulfatos/química , Adulto , Anciano , Citosol/química , Femenino , Humanos , Hidroxilación , Hígado/ultraestructura , Masculino , Microsomas Hepáticos/metabolismo , Persona de Mediana Edad
14.
Chem Biol Interact ; 302: 190-195, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30776358

RESUMEN

The natural product betulin is under investigation for several therapeutic indications, however little is known about its metabolism. In the present study, the glucuronidation and sulfation of betulin in human and rat liver microsomes and cytosol were tested. We further identified the main UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) involved in these two metabolism pathways. Results showed that one betulin glucuronide metabolite was observed after incubation with human and rat liver microsomes. The glucuronidation of betulin in human liver microsomes had a Km value of 21.1 ±â€¯5.93 µM and a Vmax value of 6.39 ±â€¯0.66 pmol/min/mg protein. The glucuronidation activity in rats was too low to get enzyme kinetic parameters. Among the 11 recombinant UGT enzymes investigated, UGT1A3 and UGT1A4 were identified as the major enzymes catalyzing the glucuronidation of betulin [Km values of 10.12 ±â€¯8.09 and 8.04 ±â€¯3.96 µM, Vmax values of 6.71 ±â€¯1.51 and 5.98 ±â€¯0.76 nmol/min/(mg protein)]. Two betulin sulfate metabolites were found in human and rat liver cytosols. Human and rat liver had similar affinity for the formation of these two metabolites, the apparent Vmax for betulin sulfate I was higher than that for betulin sulfate II in both species. Among the SULT isoforms studied, SULT2A1 was the major isoenzyme involved in the betulin sulfation metabolism in human liver cytosol. The results suggest that glucuronidation and sulfation are important metabolism pathways for betulin, and UGT1A3, UGT1A4 and SULT2A1 play the major roles in betulin glucuronidation and sulfation.


Asunto(s)
Glucuronosiltransferasa/metabolismo , Sulfotransferasas/metabolismo , Triterpenos/metabolismo , Animales , Cromatografía en Capa Delgada , Femenino , Humanos , Cinética , Microsomas Hepáticos/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Triterpenos/análisis
15.
Artículo en Inglés | MEDLINE | ID: mdl-30642935

RESUMEN

Escalating levels of antibiotic resistance in mycoplasmas, particularly macrolide resistance in Mycoplasma pneumoniae and M. genitalium, have narrowed our antibiotic arsenal. Further, mycoplasmas lack a cell wall and do not synthesize folic acid, rendering common antibiotics, such as beta-lactams, vancomycin, sulfonamides, and trimethoprim, of no value. To address this shortage, we screened nitroxoline, triclosan, and a library of 20 novel, halogenated phenazine, quinoline, and NH125 analogues against Ureaplasma species and M. hominis clinical isolates from urine. We tested a subset of these compounds (n = 9) against four mycoplasma type strains (M. pneumoniae, M. genitalium, M. hominis, and Ureaplasma urealyticum) using a validated broth microdilution or agar dilution method. Among 72 Ureaplasma species clinical isolates, nitroxoline proved most effective (MIC90, 6.25 µM), followed by an N-arylated NH125 analogue (MIC90, 12.5 µM). NH125 and its analogue had significantly higher MICs against U. urealyticum isolates than against U. parvum isolates, whereas nitroxoline did not. Nitroxoline exhibited bactericidal activity against U. parvum isolates but bacteriostatic activity against the majority of U. urealyticum isolates. Among the type strains, the compounds had the greatest activity against M. pneumoniae and M. genitalium, with 8 (80%) and 5 (71.4%) isolates demonstrating MICs of ≤12.5 µM, respectively. Triclosan also exhibited lower MICs against M. pneumoniae and M. genitalium Overall, we identified a promising range of quinoline, halogenated phenazine, and NH125 compounds that showed effectiveness against M. pneumoniae and M. genitalium and found that nitroxoline, approved for use outside the United States for the treatment of urinary tract infections, and an N-arylated NH125 analogue demonstrated low MICs against Ureaplasma species isolates.


Asunto(s)
Antibacterianos/farmacología , Imidazoles/farmacología , Mycoplasma/efectos de los fármacos , Fenazinas/farmacología , Quinolinas/farmacología , Ureaplasma urealyticum/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Humanos , Pruebas de Sensibilidad Microbiana , Mycoplasma/clasificación , Mycoplasma/aislamiento & purificación , Infecciones por Mycoplasma/tratamiento farmacológico , Infecciones por Ureaplasma/tratamiento farmacológico , Ureaplasma urealyticum/aislamiento & purificación
16.
Drug Metab Dispos ; 46(8): 1118-1128, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29853471

RESUMEN

Glutathione transferase zeta1 (GSTZ1) catalyzes glutathione (GSH)-dependent dechlorination of dichloroacetate (DCA), an investigational drug with therapeutic potential in metabolic disorders and cancer. GSTZ1 is expressed in both hepatic cytosol and mitochondria. Here, we examined the ontogeny and characterized the properties of human mitochondrial GSTZ1. GSTZ1 expression and activity with DCA were determined in 103 human hepatic mitochondrial samples prepared from livers of donors aged 1 day to 84 years. DNA from each sample was genotyped for three common GSTZ1 functional single nucleotide polymorphisms. Expression of mitochondrial GSTZ1 protein increased in an age-dependent manner to a plateau after age 21 years. Activity with DCA correlated with expression, after taking into account the somewhat higher activity of samples that were homo- or heterozygous for GSTZ1A. In samples from livers with the GSTZ1C variant, apparent enzyme kinetic constants for DCA and GSH were similar for mitochondria and cytosol after correcting for the loss of GSH observed in mitochondrial incubations. In the presence of 38 mM chloride, mitochondrial GSTZ1 exhibited shorter half-lives of inactivation compared with the cytosolic enzyme (P = 0.017). GSTZ1 protein isolated from mitochondria was shown by mass spectrometry to be identical to cytosolic GSTZ1 protein in the covered primary protein sequence. In summary, we report age-related development in the expression and activity of human hepatic mitochondrial GSTZ1 does not have the same pattern as that reported for cytosolic GSTZ1. Some properties of cytosolic and mitochondrial GSTZ1 differed, but these were not related to differences in amino acid sequence or post-translationally modified residues.


Asunto(s)
Glutatión Transferasa/genética , Hígado/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Niño , Preescolar , Citosol/metabolismo , Ácido Dicloroacético/metabolismo , Drogas en Investigación/metabolismo , Femenino , Glutatión Transferasa/metabolismo , Humanos , Lactante , Cinética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
17.
Toxicol Lett ; 294: 116-121, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29772265

RESUMEN

Sulfonation is a major pathway of estrogen biotransformation with a role in regulating estrogen homeostasis in humans and sheep. Previous in vitro studies found that triclosan is an especially potent competitive inhibitor of ovine placental estrogen sulfotransferase, with Kic of <0.1 nM. As the placenta is the main organ responsible for estrogen synthesis in pregnancy in both women and sheep, and the liver is another site of estrogen biotransformation, this study examined the effects of triclosan exposure of pregnant ewes on placental and hepatic sulfotransferase activity. Triclosan, 0.1 mg/kg/day, or saline vehicle was administered to late gestation fetal sheep for two days either by direct infusion into the fetal circulation or infusion into the maternal blood. On the third day, fetal liver and placenta were harvested and analyzed for triclosan and for cytosolic estradiol sulfotransferase activity. Placenta contained higher concentrations of triclosan than liver in each individual sheep in both treatment groups. There was a negative correlation between triclosan tissue concentration (pmol/g tissue) and cytosolic sulfotransferase activity (pmol/min/mg protein) towards estradiol. These findings demonstrated that in the sheep exposed to very low concentrations of triclosan, this substance is taken up into placenta and reduces estrogen sulfonation.


Asunto(s)
Antiinfecciosos Locales/toxicidad , Inhibidores Enzimáticos/toxicidad , Hígado/efectos de los fármacos , Exposición Materna/efectos adversos , Placenta/efectos de los fármacos , Sulfotransferasas/antagonistas & inhibidores , Triclosán/toxicidad , Animales , Antiinfecciosos Locales/administración & dosificación , Antiinfecciosos Locales/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/metabolismo , Estradiol/metabolismo , Femenino , Feto/irrigación sanguínea , Feto/efectos de los fármacos , Feto/metabolismo , Infusiones Intravenosas , Hígado/embriología , Hígado/metabolismo , Placenta/enzimología , Placenta/metabolismo , Embarazo , Oveja Doméstica , Sulfotransferasas/metabolismo , Distribución Tisular , Toxicocinética , Triclosán/administración & dosificación , Triclosán/metabolismo
18.
Biochem Pharmacol ; 152: 236-243, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29626439

RESUMEN

Biotransformation of dichloroacetate (DCA) to glyoxylate by hepatic glutathione transferase zeta 1 (GSTZ1) is considered the principal determinant of the rate of plasma clearance of the drug. However, several other organismal and subcellular factors are also known to influence DCA metabolism. We utilized a female rat model to study these poorly understood processes. Rats aged 4 weeks (young) and 42-52 weeks (adult) were used to model children and adults, respectively. Hepatic chloride concentrations, which influence the rate of GSTZ1 inactivation by DCA, were lower in rat than in human tissues and rats did not show the age dependence previously seen in humans. We found GSTZ1 expression and activity in rat brain, heart, and kidney cell-free homogenates that were age-dependent. GSTZ1 expression in brain was higher in young rats than adult rats, whereas cardiac and renal GSTZ1 expression levels were higher in adult than young rats. GSTZ1 activity with DCA could not be measured accurately in kidney cell-free homogenates due to rapid depletion of glutathione by γ-glutamyl transpeptidase. Following oral administration of DCA, 100 mg/kg, to rats, GSTZ1 expression and activity were reduced in all rat tissues, but chloride concentrations were not affected. Together, these data extend our understanding of factors that determine the in vivo kinetics of DCA.


Asunto(s)
Cloruros/metabolismo , Ácido Dicloroacético/metabolismo , Glutatión Transferasa/metabolismo , Hígado/metabolismo , Animales , Encéfalo/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica , Glutatión , Glutatión Transferasa/genética , Riñón/metabolismo , Mitocondrias/metabolismo , Miocardio/metabolismo , Ratas , Ratas Sprague-Dawley
19.
J Clin Pharmacol ; 58(2): 212-220, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28914978

RESUMEN

Dichloroacetate (DCA) is an investigational drug used to treat congenital lactic acidosis and other mitochondrial disorders. Response to DCA therapy in young children may be suboptimal following body weight-based dosing. This is because of autoinhibition of its metabolism, age-dependent changes in pharmacokinetics, and polymorphisms in glutathione transferase zeta 1 (GSTZ1), its primary metabolizing enzyme. Our objective was to predict optimal DCA doses for the treatment of congenital lactic acidosis in children. Accordingly, a semimechanistic pharmacokinetic-enzyme turnover model was developed in a step-wise approach: (1) a population pharmacokinetic model for adults was developed; (2) the adult model was scaled to children using allometry and physiology-based scaling; and (3) the scaled model was externally qualified, updated with clinical data, and optimal doses were projected. A 2-compartment model accounting for saturable clearance and GSTZ1 enzyme turnover successfully characterized the DCA PK in adults and children. DCA-induced inactivation of GSTZ1 resulted in phenoconversion of all subjects into slow metabolizers after repeated dosing. However, rate and extent of inactivation was 2-fold higher in subjects without the wild-type EGT allelic variant of GSTZ1, resulting in further phenoconversion into ultraslow metabolizers after repeated DCA administration. Furthermore, DCA-induced GSTZ1 inactivation rate and extent was found to be 25- to 30-fold lower in children than in adults, potentially accounting for the observed age-dependent changes in PK. Finally, a 12.5 and 10.6 mg/kg twice-daily DCA dose was optimal in achieving the target steady-state trough concentrations (5-25 mg/L) for EGT carrier and EGT noncarrier children, respectively.


Asunto(s)
Acidosis Láctica/tratamiento farmacológico , Ácido Dicloroacético/administración & dosificación , Glutatión Transferasa/antagonistas & inhibidores , Modelos Biológicos , Acidosis Láctica/genética , Acidosis Láctica/metabolismo , Adolescente , Adulto , Niño , Preescolar , Femenino , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Lactante , Masculino , Adulto Joven
20.
J Steroid Biochem Mol Biol ; 172: 46-54, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28552400

RESUMEN

Celecoxib is known to alter the preferred position of SULT2A1-catalyzed sulfonation of 17ß-estradiol (17ß-E2) and other estrogens from the 3- to the 17-position. Understanding the effects of celecoxib on estrogen sulfonation is of interest in the context of the investigational use of celecoxib to treat breast cancer. This study examined the effects on celecoxib on cytosolic sulfotransferases in human and rat liver and on SULT enzymes known to be expressed in liver. Celecoxib's effects on the sulfonation of several steroids catalyzed by human liver cytosol were similar but not identical to those observed previously for SULT2A1. Celecoxib was shown to inhibit recombinant SULT1A1-catalyzed sulfonation of 10nM estrone and 4µM p-nitrophenol with IC50 values of 2.6 and 2.1µM, respectively, but did not inhibit SULT1E1-catalyzed estrone sulfonation. In human liver cytosol, the combined effect of celecoxib and known SULT1A1 and 1E1 inhibitors, quercetin and triclosan, resulted in inhibition of 17ß-E2-3-sulfonation such that the 17-sulfate became the major metabolite: this is of interest because the 17-sulfate is not readily hydrolyzed by steroid sulfatase to 17ß-E2. Investigation of hepatic cytosolic steroid sulfonation in rat revealed that celecoxib did not stimulate 17ß-E2 17-sulfonation in male or female rat liver as it does with human SULT2A1 and human liver cytosol, demonstrating that rat is not a useful model of this effect. In silico studies suggested that the presence of the bulky tryptophan residue in the substrate-binding site of the rat SULT2A homolog instead of glycine as in human SULT2A1 may explain this species difference.


Asunto(s)
Arilsulfotransferasa/metabolismo , Celecoxib/farmacología , Estradiol/metabolismo , Estrona/metabolismo , Hepatocitos/enzimología , Adulto , Animales , Arilsulfotransferasa/química , Arilsulfotransferasa/genética , Celecoxib/química , Estradiol/farmacología , Estrona/farmacología , Femenino , Expresión Génica , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Modelos Moleculares , Simulación del Acoplamiento Molecular , Nitrofenoles/química , Nitrofenoles/farmacología , Cultivo Primario de Células , Quercetina/química , Quercetina/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Homología Estructural de Proteína , Sulfatos/química , Sulfatos/metabolismo , Sulfotransferasas/química , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Triclosán/química , Triclosán/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...