Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nutr Neurosci ; 22(6): 418-424, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29113539

RESUMEN

OBJECTIVES: Increases in astrocytes and one of their markers, glial fibrillary acidic protein (GFAP) have been reported in the brains of patients with Alzheimer's disease (AD). N-3 polyunsaturated fatty acids (PUFA) modulate neuroinflammation in animal models; however, their effect on astrocytes is unclear. METHODS: Fat-1 mice and their wildtype littermates were fed either a fish oil diet or a safflower oil diet deprived of n-3 PUFA. At 12 weeks, mice underwent intracerebroventricular infusion of amyloid-ß 1-40. Astrocyte phenotype in the hippocampus was assessed at baseline and 10 days post-surgery using immunohistochemistry with various microscopy and image analysis techniques. RESULTS: GFAP increased in all groups in response to amyloid-ß, with a greater increase in fish oil-fed mice than either fat-1 or wildtype safflower oil-fed mice. Astrocytes in this group were also more hypertrophic, suggesting increased activation. Both fat-1- and fish oil-fed mice had greater increases in branch number and length in response to amyloid-ß infusion than wildtype safflower animals. CONCLUSION: Fish oil feeding, and to a lesser extent the fat-1 transgene, enhances the astrocyte activation phenotype in response to amyloid-ß 1-40. Astrocytes in mice fed fish oil were more activated in response to amyloid-ß than in fat-1 mice despite similar levels of hippocampal n-3 PUFA, which suggests that other fatty acids or dietary factors contribute to this effect.


Asunto(s)
Péptidos beta-Amiloides/administración & dosificación , Astrocitos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Encefalitis/metabolismo , Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-3/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Animales , Astrocitos/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Infusiones Intraventriculares , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Aceite de Cártamo/administración & dosificación , Transgenes
2.
Brain Behav Immun ; 69: 74-90, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29109025

RESUMEN

BACKGROUND: Neuroinflammation is a recognized hallmark of Alzheimer's disease, along with accumulation of amyloid-ß plaques, neurofibrillary tangles and synaptic loss. n-3 polyunsaturated fatty acids (PUFA) and molecules derived from them, including eicosapentaenoic acid-derived eicosanoids and docosahexaenoic acid-derived docosanoids, are known to have both anti-inflammatory and pro-resolving properties, while human observational data links consumption of these fatty acids to a decreased risk of Alzheimer's disease. Few studies have examined the neuroinflammation-modulating effects of n-3 PUFA feeding in an Alzheimer's disease-related model, and none have investigated whether these effects are mediated by changes in brain eicosanoids and docosanoids. Here, we use both a fat-1 transgenic mouse and a fish oil feeding model to study the impact of increasing tissue n-3 PUFA on neuroinflammation and the production of pro-inflammatory and pro-resolving lipid mediators. METHODS: Fat-1 mice, transgenic animals that can convert n-6 to n-3 PUFA, and their wildtype littermates were fed diets containing either fish oil (high n-3 PUFA) or safflower oil (negligible n-3 PUFA) from weaning to 12 weeks. Animals then underwent intracerebroventricular infusion of either amyloid-ß 1-40 or a control peptide. Hippocampi were collected from non-surgery and surgery animals 10 days after infusion. Microarray was used to measure enrichment of inflammation-associated gene categories and expression of genes involved in the synthesis of lipid mediators. Results were validated by real-time PCR in a separate cohort of animals. Lipid mediators were measured via liquid chromatography tandem mass spectrometry. RESULTS: Fat-1 and wildtype mice fed fish oil had higher total hippocampal DHA than wildtype mice fed the safflower oil diet. The safflower-fed mice, but not the fat-1 or fish oil-fed mice, had significantly increased expression in gene ontology categories associated with inflammation in response to amyloid-ß infusion. These effects were independent of changes in the expression of genes involved in the synthesis of eicosanoids or docosanoids in any group. Gene expression was replicated upon validation in the wildtype safflower and fish oil-fed, but not the fat-1 mice. Protectin, maresin and D and E series resolvins were not detected in any sample. There were no major differences in levels of other eicosanoids or docosanoids between any of the groups in response to amyloid-ß infusion. CONCLUSIONS: Fish oil feeding decreases neuroinflammatory gene expression in response to amyloid-ß. Neither amyloid-ß infusion or increasing brain DHA affects the brain concentrations of specialized pro-resolving mediators in this model, or the concentrations of most other eicosanoids and docosanoids.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/efectos de los fármacos , Eicosanoides/metabolismo , Ácidos Erucicos/metabolismo , Aceites de Pescado/farmacología , Expresión Génica/efectos de los fármacos , Inflamación/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inflamación/genética , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA