Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38609167

RESUMEN

CONTEXT: How pre-exercise meal composition influences metabolic and health responses to exercise later in the day is currently unclear. OBJECTIVE: Examine the effects of substituting carbohydrate for protein at lunch on subsequent exercise metabolism, appetite, and energy intake. METHODS: Twelve healthy males completed three trials in randomized, counterbalanced order. Following a standardized breakfast (779 ± 66 kcal; ∼08:15), participants consumed a lunch (1186 ± 140 kcal; ∼13:15) containing either 0.2 g·kg-1 carbohydrate and ∼2 g·kg-1 protein (LO-CARB), 2 g·kg-1 carbohydrate and ∼0.4 g·kg-1 protein (HI-CARB), or fasted (FAST). Participants later cycled at ∼60% V̇O2peak for 1 h (∼16:15) and post-exercise ad-libitum energy intake was measured (∼18:30). Substrate oxidation, subjective appetite, and plasma concentrations of glucose, insulin, non-esterified fatty acids (NEFA), peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and acylated ghrelin (AG) were measured for 5 h post-lunch. RESULTS: Fat oxidation was greater during FAST (+11.66 ± 6.63 g) and LO-CARB (+8.00 ± 3.83 g) than HI-CARB (p < 0.001), with FAST greater than LO-CARB (+3.67 ± 5.07 g; p < 0.05). NEFA were lowest in HI-CARB and highest in FAST, with insulin demonstrating the inverse response (all p < 0.01). PYY and GLP-1 demonstrated a stepwise pattern, with LO-CARB greatest and FAST lowest (all p < 0.01). AG was lower during HI-CARB and LO-CARB versus FAST (p < 0.01). Energy intake in LO-CARB was lower than FAST (-383 ± 233 kcal; p < 0.001) and HI-CARB (-313 ± 284 kcal; p < 0.001). CONCLUSION: Substituting carbohydrate for protein in a pre-exercise lunch increased fat oxidation, suppressed subjective and hormonal appetite, and reduced post-exercise energy intake.

2.
PLoS One ; 19(2): e0298134, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394147

RESUMEN

INTRODUCTION: Historically, university students demonstrate poor movement behaviours that could negatively impact current and future health. Recent literature has focused on identifying determinants of physical activity (PA) and sedentary behaviour (SB) in this population to inform the development of intervention strategies. However, the COVID-19 pandemic substantially restricted movement behaviours in this population, meaning findings of previous research may no longer be applicable within the current societal context. The present study explored the longitudinal relationships between pre-pandemic psychological, behavioural and anthropometric factors, and the movement behaviours of UK university students nine months following the outbreak of COVID-19. METHODS: Mental wellbeing (MWB), perceived stress (PS), body mass index (BMI), SB, and PA were assessed using an online self-report survey in 255 students prior to (October 2019) and nine months following (October 2020) the first confirmed case of COVID-19 in the UK. Path analysis was utilised to test relationships between pre-COVID mental wellbeing, perceived stress and BMI, and movement behaviours during the pandemic. RESULTS: The fit of the path analysis model was good (χ2 = 0.01; CMIN = 0.10, CFI = 1.00, RMSEA = 0.00). Pre-covid MWB and PS positively influenced PA (ß = 0.29; ß = 0.24; P < 0.01) but not SB (ß = -0.10; ß = 0.00; P = 0.79) during the pandemic. Additionally, pre-pandemic SB and PA positively influenced SB and PA during the pandemic respectively (SB: ß = 0.26; P < 0.01) (PA: ß = 0.55; P < 0.01). Pre-pandemic BMI did not influence any measured variable during the pandemic (PA: ß = 0.03 and P = 0.29; SB: ß = 0.06 and P = 0.56), and there was no mediating effect of PA on SB during the pandemic (ß = -0.26; P = 0.14). CONCLUSION: These findings indicate that pre-covid mental health and movement behaviours had a direct positive influence on PA during the pandemic, but not SB. This longitudinal study demonstrates the influence that prior psychological and behavioural factors have in determining university students' response to periods of elevated stress and uncertainty, furthering our understanding of determinants of health-related behaviours in students.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Conducta Sedentaria , Universidades , Estudios Longitudinales , Ejercicio Físico/psicología , Estudiantes/psicología
3.
Eur J Nutr ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349552

RESUMEN

PURPOSE: Rapid gastric emptying and intestinal absorption of beverages is essential for rapid rehydration, and certain amino acids (AA) may augment fluid delivery. Three sugar-free beverages, containing differing AA concentrations (AA + PZ), were assessed for fluid absorption kinetics against commercial sugar-free (PZ, GZ) and carbohydrate-containing (GTQ) beverages. METHODS: Healthy individuals (n = 15-17 per study) completed three randomised trials. Three beverages (550-600 mL) were ingested in each study (Study 1: AA + PZ [17.51 g/L AA], PZ, GZ; Study 2: AA + PZ [6.96 g/L AA], PZ, GZ; Study 3: AA + PZ [3.48 g/L AA], PZ, GTQ), containing 3.000 g deuterium oxide (D2O). Blood samples were collected pre-, 2-min, 5-min, and every 5-min until 60-min post-ingestion to quantify maximal D2O enrichment (Cmax), time Cmax occurred (Tmax) and area under the curve (AUC). RESULTS: Study 1: AUC (AA + PZ: 15,184 ± 3532 δ‰ vs. VSMOW; PZ: 17,328 ± 3153 δ‰ vs. VSMOW; GZ: 17,749 ± 4204 δ‰ vs. VSMOW; P ≤ 0.006) and Tmax (P ≤ 0.005) were lower for AA + PZ vs. PZ/GZ. Study 2: D2O enrichment characteristics were not different amongst beverages (P ≥ 0.338). Study 3: Cmax (AA + PZ: 440 ± 94 δ‰ vs. VSMOW; PZ: 429 ± 83 δ‰ vs. VSMOW; GTQ: 398 ± 81 δ‰ vs. VSMOW) was greater (P = 0.046) for AA + PZ than GTQ, with no other differences (P ≥ 0.106). CONCLUSION: The addition of small amounts of AA (3.48 g/L) to a sugar-free beverage increased fluid delivery to the circulation compared to a carbohydrate-based beverage, but greater amounts (17.51 g/L) delayed delivery.

4.
Nutrients ; 16(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38257136

RESUMEN

Elite football is associated with the increased risk of illness, although targeted supplementation can reduce illness risk. This study assessed the effects of a supplement containing turmeric root within a black pepper and fat-soluble blend, vitamin C and vitamin D, on upper respiratory symptoms (URS), gastrointestinal symptoms (GIS), muscle soreness, and markers of inflammation and gut permeability in elite male footballers. Twenty-three footballers completed 3 weeks of no intervention (CON), followed by 16 weeks of daily consuming 60 mL of a commercially available supplement containing raw turmeric root (17.5 g, estimated to contain 700 mg of curcumin), vitamin C (1000 mg), and vitamin D3 (3000 IU/75 mcg) (SUP). URS and GIS were measured daily. Immediately (0 h), 40, and 64 h after six competitive matches (two in CON, four in SUP), the subjective soreness and plasma concentrations of creatine kinase [CK], c-reactive protein [CRP], and intestinal fatty-acid binding protein [I-FABP] were assessed. URS incidence (p < 0.001), GIS (p < 0.05), and plasma [I-FABP] at 0 h (p < 0.05) were greater during CON versus SUP. At 40 h, [CRP] was greater than 0 h during CON (p < 0.01) but not SUP (p = 0.204). There were no differences in soreness or [CK]. This study indicates that turmeric root, vitamin C, and vitamin D supplementation over 16 weeks can reduce URS, GIS, and post-match [I-FABP] in elite footballers.


Asunto(s)
Ácido Ascórbico , Fútbol Americano , Curcuma , Vitaminas , Suplementos Dietéticos , Vitamina D , Proteína C-Reactiva , Creatina Quinasa
5.
Front Nutr ; 10: 1175622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293669

RESUMEN

Football match-play causes muscle damage and provokes an inflammatory response. Rapid recovery is paramount to optimising subsequent performance and reducing injury risk. Turmeric contains high concentrations of curcumin, a polyphenol that has been shown to reduce muscle damage and soreness post-exercise in recreational exercisers. However, it is unknown whether a curcumin-containing supplement can support elite footballers recovery between matches. This applied study explored whether a turmeric supplement could improve performance, subjective and physiological markers of recovery, in elite male footballers. Twenty-four elite male footballers divided into a turmeric group, who consumed 60 mL of a turmeric drink twice per day, or a control group who did not. After 96 h of rest, baseline measurements of subjective soreness (leg and whole-body), plasma creatine kinase ([CK]), plasma C-reactive protein ([CRP]), isometric mid-thigh pull (IMTP) and counter movement jump (CMJ), were collected. Following eight competitive matches, subjective leg and whole-body soreness and plasma concentrations of inflammation markers ([CK] and [CRP]) were assessed immediately (0 h), 40 and 64 h post-match. Performance markers (IMTP and CMJ) were also assessed at 40 and 64 h post-match. Percentage change from baseline showed a main effect of group (p = 0.035, p = 0.005) and time (p = 0.002, p = 0.002) for both leg and whole-body soreness, respectively. There was a group by time interaction effect (p = 0.049) for [CRP]. There were no effects of turmeric on [CK], CMJ or IMTP. This applied study is the first in elite footballers to show that a curcumin-containing supplementation may attenuate a biomarker of inflammation [CRP] and soreness post-match play.

6.
Appetite ; 182: 106422, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36539157

RESUMEN

Exercise is an important component of a weight management strategy. However, little is known about whether circadian variations in physiological and behavioural processes can influence the appetite and energy balance responses to exercise performed at different times of the day. This study compared the effects of morning and evening exercise on appetite, post-exercise energy intake, and voluntary performance. In randomised, counterbalanced order, 16 healthy males and females (n = 8 each) completed two trials, performing morning exercise at 10:30 (AMEx) or evening exercise at 18:30 (PMEx). Exercise consisted of 30 min steady-state cycling (60% V˙ O2peak), and a 15-min performance test. A standardised meal (543 ± 86 kcal) was consumed 2-h before exercise and ad-libitum energy intake was assessed 15 min after exercise, with subjective appetite measured throughout. Absolute ad-libitum energy intake was 152 ± 126 kcal greater during PMEx (P < 0.001), but there was no differences in subjective appetite between trials immediately pre-exercise, or immediately before the post-exercise meal (P ≥ 0.060). Resting energy expenditure (P < 0.01) and carbohydrate oxidation (P < 0.05) were greater during AMEx, but there were no differences in substrate oxidation or energy expenditure during exercise (P ≥ 0.155). Exercise performance was not different between trials (P = 0.628). In conclusion, acute morning and evening exercise prompt similar appetite responses, but post-exercise ad-libitum energy intake is greater following evening exercise. These findings demonstrate discordant responses between subjective appetite and ad-libitum energy intake but suggest that exercise might offset circadian variations in appetite. Longer-term studies are required to determine how exercise timing affects adherence and weight management outcomes to exercise interventions. TRIAL REGISTRATION: NCT04742530, February 8, 2021.


Asunto(s)
Apetito , Ingestión de Energía , Femenino , Humanos , Masculino , Apetito/fisiología , Estudios Cruzados , Ingestión de Energía/fisiología , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Comidas
7.
Int J Sport Nutr Exerc Metab ; 33(1): 11-22, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36170970

RESUMEN

Acute morning fasted exercise may create a greater negative 24-hr energy balance than the same exercise performed after a meal, but research exploring fasted evening exercise is limited. This study assessed the effects of 7-hr fasting before evening exercise on energy intake, metabolism, and performance. Sixteen healthy males and females (n = 8 each) completed two randomized, counterbalanced trials. Participants consumed a standardized breakfast (08:30) and lunch (11:30). Two hours before exercise (16:30), participants consumed a meal (543 ± 86 kcal; FED) or remained fasted (FAST). Exercise involved 30-min cycling (∼60% VO2peak) and a 15-min performance test (∼85% VO2peak; 18:30). Ad libitum energy intake was assessed 15 min postexercise. Subjective appetite was measured throughout. Energy intake was 99 ± 162 kcal greater postexercise (p < .05), but 443 ± 128 kcal lower over the day (p < .001) in FAST. Appetite was elevated between the preexercise meal and ad libitum meal in FAST (p < .001), with no further differences (p ≥ .458). Fat oxidation was greater (+3.25 ± 1.99 g), and carbohydrate oxidation was lower (-9.16 ± 5.80 g) during exercise in FAST (p < .001). Exercise performance was 3.8% lower in FAST (153 ± 57 kJ vs. 159 ± 58 kJ, p < .05), with preexercise motivation, energy, readiness, and postexercise enjoyment also lower in FAST (p < .01). Fasted evening exercise reduced net energy intake and increased fat oxidation compared to exercise performed 2 hr after a meal. However, fasting also reduced voluntary performance, motivation, and exercise enjoyment. Future studies are needed to examine the long-term effects of this intervention as a weight management strategy.


Asunto(s)
Apetito , Ayuno , Femenino , Humanos , Masculino , Estudios Cruzados , Ingestión de Energía , Metabolismo Energético , Ejercicio Físico , Oxidación-Reducción
8.
Eur J Nutr ; 61(3): 1319-1330, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34766208

RESUMEN

PURPOSE: This study aimed to assess the effects of consuming a very-low-energy placebo breakfast on subsequent appetite and lunch energy intake. METHODS: Fourteen healthy males consumed water-only (WAT), very-low-energy, viscous placebo (containing water, low-calorie flavoured squash, and xanthan gum; ~ 16 kcal; PLA), and whole-food (~ 573 kcal; FOOD) breakfasts in a randomised order. Subjects were blinded to the energy content of PLA and specific study aims. Venous blood samples were collected pre-breakfast, 60- and 180-min post-breakfast to assess plasma acylated ghrelin and peptide tyrosine tyrosine concentrations. Subjective appetite was measured regularly, and energy intake was assessed at an ad libitum lunch meal 195-min post-breakfast. RESULTS: Lunch energy intake was lower during FOOD compared to WAT (P < 0.05), with no further differences between trials (P ≥ 0.132). Cumulative energy intake (breakfast plus lunch) was lower during PLA (1078 ± 274 kcal) and WAT (1093 ± 249 kcal), compared to FOOD (1554 ± 301 kcal; P < 0.001). Total area under the curve (AUC) for hunger, desire to eat and prospective food consumption were lower, and fullness was greater during PLA and FOOD compared to WAT (P < 0.05). AUC for hunger was lower during FOOD compared to PLA (P < 0.05). During FOOD, acylated ghrelin was suppressed compared to PLA and WAT at 60 min (P < 0.05), with no other hormonal differences between trials (P ≥ 0.071). CONCLUSION: Consuming a very-low-energy placebo breakfast does not alter energy intake at lunch but may reduce cumulative energy intake across breakfast and lunch and attenuate elevations in subjective appetite associated with breakfast omission. TRIAL REGISTRATION: NCT04735783, 2nd February 2021, retrospectively registered.


Asunto(s)
Apetito , Desayuno , Estudios Cruzados , Ingestión de Energía , Humanos , Masculino , Percepción , Periodo Posprandial
9.
Amino Acids ; 53(11): 1763-1766, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34676442

RESUMEN

We evaluated whether insulin could stimulate ß-alanine uptake by skeletal muscle cells in vitro. Mouse myoblasts (C2C12) (n = 3 wells per condition) were cultured with ß-alanine (350 or 700 µmol·L-1), with insulin (100 µU·mL-1) either added to the media or not. Insulin stimulated the ß-alanine uptake at the lower (350 µmol·L-1) but not higher (700 µmol·L-1) ß-alanine concentration in culture medium, indicating that transporter saturation might blunt the stimulatory effects of insulin.


Asunto(s)
Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , beta-Alanina/metabolismo , Animales , Transporte Biológico , Línea Celular , Insulina/análisis , Ratones , Fibras Musculares Esqueléticas/citología
10.
Int J Sport Nutr Exerc Metab ; 31(4): 305-313, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34098531

RESUMEN

Currently, little is known about the extent of interindividual variability in response to beta-alanine (BA) supplementation, nor what proportion of said variability can be attributed to external factors or to the intervention itself (intervention response). To investigate this, individual participant data on the effect of BA supplementation on a high-intensity cycling capacity test (CCT110%) were meta-analyzed. Changes in time to exhaustion (TTE) and muscle carnosine were the primary and secondary outcomes. Multilevel distributional Bayesian models were used to estimate the mean and SD of BA and placebo group change scores. The relative sizes of group SDs were used to infer whether observed variation in change scores were due to intervention or non-intervention-related effects. Six eligible studies were identified, and individual data were obtained from four of these. Analyses showed a group effect of BA supplementation on TTE (7.7, 95% credible interval [CrI] [1.3, 14.3] s) and muscle carnosine (18.1, 95% CrI [14.5, 21.9] mmol/kg DM). A large intervention response variation was identified for muscle carnosine (σIR = 5.8, 95% CrI [4.2, 7.4] mmol/kg DM) while equivalent change score SDs were shown for TTE in both the placebo (16.1, 95% CrI [13.0, 21.3] s) and BA (15.9, 95% CrI [13.0, 20.0] s) conditions, with the probability that SD was greater in placebo being 0.64. In conclusion, the similarity in observed change score SDs between groups for TTE indicates the source of variation is common to both groups, and therefore unrelated to the supplement itself, likely originating instead from external factors such as nutritional intake, sleep patterns, or training status.


Asunto(s)
Ciclismo/fisiología , Carnosina/metabolismo , Suplementos Dietéticos , Tolerancia al Ejercicio/fisiología , Músculo Esquelético/metabolismo , beta-Alanina/administración & dosificación , Teorema de Bayes , Sesgo , Método Doble Ciego , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Fenómenos Fisiológicos en la Nutrición Deportiva , Factores de Tiempo
11.
Artículo en Inglés | MEDLINE | ID: mdl-33809313

RESUMEN

Initial studies indicated that student mental health was impaired during the early stages of the pandemic and that maintaining/improving physical activity gave some protection from mental illness. However, as the pandemic persists, these data may not reflect current circumstances and may have been confounded by exam stress. METHODS: This study used an online survey to assess the changes in, and associations between, mental health and movement behaviours in 255 UK university students from before the COVID-19 pandemic (October 2019) to 9 months following the UK's first confirmed case (October 2020). Changes in and associations between mental wellbeing, perceived stress, physical activity, and sedentary behaviour were assessed using a mixed model ANOVA; a multiple linear regression model determined the predictive value of variables associated with Δ mental wellbeing. RESULTS: Mental wellbeing and physical activity decreased (45.2 to 42.3 (p < 0.001); 223 to 173 min/week (p < 0.001)), whereas perceived stress and time spent sedentary increased (19.8 to 22.8 (p < 0.001); 66.0 to 71.2 h/week (p = 0.036)). Δ perceived stress, Δ sedentary behaviour and university year accounted for 64.7%, 12.9%, and 10.1% of the variance in Δ mental wellbeing (p < 0.001; p = 0.006; p = 0.035). CONCLUSION: The COVID-19 pandemic is having a sustained negative impact on student mental health and movement behaviour.


Asunto(s)
COVID-19 , Salud Mental , Humanos , Estudios Longitudinales , Pandemias , SARS-CoV-2 , Estudiantes , Reino Unido/epidemiología
12.
Int J Sports Physiol Perform ; 16(11): 1573-1579, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33831843

RESUMEN

PURPOSE: To examine whether an ecologically valid, intermittent, sprint-based warm-up strategy impacted the ergogenic capacity of individualized sodium bicarbonate (NaHCO3) ingestion on 4-km cycling time-trial (TT) performance. METHODS: A total of 8 male cyclists attended 6 laboratory visits for familiarization, determination of time to peak blood bicarbonate, and 4 × 4-km cycling TTs. Experimental beverages were administered doubleblind. Treatments were conducted in a block-randomized, crossover order: intermittent warm-up + NaHCO3 (IWSB), intermittent warm-up + placebo, control warm-up + NaHCO3 (CWSB), and control warm-up + placebo (CWP). The intermittent warm-up comprised exercise corresponding to lactate threshold (5 min at 50%, 2 min at 60%, 2 min at 80%, 1 min at 100%, and 2 min at 50%) and 3 × 10-second maximal sprints. The control warm-up comprised 16.5 minutes cycling at 150 W. Participants ingested 0.3 g·kg body mass-1 NaHCO3 or 0.03 g·kg body mass-1 sodium chloride (placebo) in 5 mL·kg body mass-1 fluid (3:2, water and sugar-free orange squash). Paired t tests were conducted for TT performance. Hematological data (blood bicarbonate and blood lactate) and gastrointestinal discomfort were analyzed using repeated-measures analysis of variance. RESULTS: Performance was faster for CWSB versus IWSB (5.0 [6.1] s; P = .052) and CWP (5.8 [6.0] s; P = .03). Pre-TT bicarbonate concentration was elevated for CWSB versus IWSB (+9.3 mmol·L-1; P < .001) and CWP (+7.1 mmol·L-1; P < .001). Post-TT blood lactate concentration was elevated for CWSB versus CWP (+2.52 mmol·L-1; P = .022). Belching was exacerbated pre-warm-up for IWSB versus intermittent warm-up +placebo (P = .046) and CWP (P = .027). CONCLUSION: An intermittent, sprint-based warm-up mitigated the ergogenic benefits of NaHCO3 ingestion on 4-km cycling TT performance.


Asunto(s)
Rendimiento Atlético , Sustancias para Mejorar el Rendimiento , Ejercicio de Calentamiento , Ciclismo , Método Doble Ciego , Ingestión de Alimentos , Humanos , Concentración de Iones de Hidrógeno , Masculino , Bicarbonato de Sodio
13.
J Sports Sci ; 39(11): 1295-1301, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33491594

RESUMEN

The availability of dietary beta-alanine (BA) is the limiting factor in carnosine synthesis within human muscle due to its low intramuscular concentration and substrate affinity. Carnosine can accept hydrogen ions (H+), making it an important intramuscular buffer against exercise-induced acidosis. Metabolite accumulation rate increases when exercising in hypoxic conditions, thus an increased carnosine concentration could attenuate H+ build-up when exercising in hypoxic conditions. This study examined the effects of BA supplementation on high intensity cycling capacity in normoxia and hypoxia. In a double-blind design, nineteen males were matched into a BA group (n = 10; 6.4 g·d-1) or a placebo group (PLA; n = 9) and supplemented for 28 days, carrying out two pre- and two post-supplementation cycling capacity trials at 110% of powermax, one in normoxia and one in hypoxia (15.5% O2). Hypoxia led to a 9.1% reduction in exercise capacity, but BA supplementation had no significant effect on exercise capacity in normoxia or hypoxia (P > 0.05). Blood lactate accumulation showed a significant trial x time interaction post-supplementation (P = 0.016), although this was not significantly different between groups. BA supplementation did not increase high intensity cycling capacity in normoxia, nor did it improve cycling capacity in hypoxia even though exercise capacity was reduced under hypoxic conditions.


Asunto(s)
Ciclismo/fisiología , Carnosina/biosíntesis , Suplementos Dietéticos , Hipoxia/metabolismo , Músculo Esquelético/metabolismo , beta-Alanina/metabolismo , Acidosis Láctica/sangre , Análisis de Varianza , Método Doble Ciego , Prueba de Esfuerzo , Tolerancia al Ejercicio/fisiología , Humanos , Hidrógeno/metabolismo , Masculino , Sustancias para Mejorar el Rendimiento/administración & dosificación , Sustancias para Mejorar el Rendimiento/metabolismo , Placebos , Método Simple Ciego , Adulto Joven , beta-Alanina/administración & dosificación
14.
Sports Med ; 49(Suppl 2): 103-114, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31696453

RESUMEN

The impact of alterations in hydration status on human physiology and performance responses during exercise is one of the oldest research topics in sport and exercise nutrition. This body of work has mainly focussed on the impact of reduced body water stores (i.e. hypohydration) on these outcomes, on the whole demonstrating that hypohydration impairs endurance performance, likely via detrimental effects on a number of physiological functions. However, an important consideration, that has received little attention, is the methods that have traditionally been used to investigate how hypohydration affects exercise outcomes, as those used may confound the results of many studies. There are two main methodological limitations in much of the published literature that perhaps make the results of studies investigating performance outcomes difficult to interpret. First, subjects involved in studies are generally not blinded to the intervention taking place (i.e. they know what their hydration status is), which may introduce expectancy effects. Second, most of the methods used to induce hypohydration are both uncomfortable and unfamiliar to the subjects, meaning that alterations in performance may be caused by this discomfort, rather than hypohydration per se. This review discusses these methodological considerations and provides an overview of the small body of recent work that has attempted to correct some of these methodological issues. On balance, these recent blinded hydration studies suggest hypohydration equivalent to 2-3% body mass decreases endurance cycling performance in the heat, at least when no/little fluid is ingested.


Asunto(s)
Deshidratación/fisiopatología , Ejercicio Físico , Resistencia Física , Ciclismo/fisiología , Agua Corporal , Calor , Humanos , Proyectos de Investigación
15.
Int J Sport Nutr Exerc Metab ; 27(1): 25-31, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27616732

RESUMEN

The aim of the current study was to investigate the influence of mouth rinsing carbohydrate at increasing concentrations on ~1 hr cycle time trial performance. Eleven male cyclists completed three experimental trials, following an overnight fast. Cyclists performed a ~1 hr time trial on a cycle ergometer, while rinsing their mouth for 5 s with either a 7% maltodextrin solution (CHO), 14% CHO or a taste-matched placebo (PLA) after every 12.5% of the set amount of work. Heart rate was recorded every 12.5% of the time trial, while RPE and GI comfort were determined every 25% of the time trial. The mouth rinse protocol influenced the time to complete the time trial (p < .001), with cyclists completing the time trial faster during 7% CHO (57.3 ± 4.5 min; p = .004) and 14% CHO (57.4 ± 4.1 min; p = .007), compared with PLA (59.5 ± 4.9 min). There was no difference between the two carbohydrate trials (p = .737). There was a main effect of time (P<0.001) for both heart rate and RPE, but no main effect of trial (p = .107 and p = .849, respectively). Scores for GI comfort ranged from 0-2 during trials, indicating very little GI discomfort during exercise. In conclusion, mouth rinsing and expectorating a 7% maltodextrin solution, for 5 s routinely during exercise was associated with improved cycle time trial performance approximately 1 h in duration. Increasing the carbohydrate concentration of the rinsed solution from 7% to 14% resulted in no further performance improvement.


Asunto(s)
Rendimiento Atlético , Ciclismo , Carbohidratos de la Dieta/administración & dosificación , Frecuencia Cardíaca/efectos de los fármacos , Adulto , Glucemia/metabolismo , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Humanos , Masculino , Persona de Mediana Edad , Consumo de Oxígeno , Polisacáridos/administración & dosificación
16.
J Appl Physiol (1985) ; 119(7): 824-30, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26251510

RESUMEN

Bone resorption is increased after running, with no change in bone formation. Feeding during exercise might attenuate this increase, preventing associated problems for bone. This study investigated the immediate and short-term bone metabolic responses to carbohydrate (CHO) feeding during treadmill running. Ten men completed two 7-day trials, once being fed CHO (8% glucose immediately before, every 20 min during, and immediately after exercise at a rate of 0.7 g CHO · kg body mass(-1) · h(-1)) and once being fed placebo (PBO). On day 4 of each trial, participants completed a 120-min treadmill run at 70% of maximal oxygen consumption (V̇o2 max). Blood was taken at baseline (BASE), immediately after exercise (EE), after 60 (R1) and 120 (R2) min of recovery, and on three follow-up days (FU1-FU3). Markers of bone resorption [COOH-terminal telopeptide region of collagen type 1 (ß-CTX)] and formation [NH2-terminal propeptides of procollagen type 1 (P1NP)] were measured, along with osteocalcin (OC), parathyroid hormone (PTH), albumin-adjusted calcium (ACa), phosphate, glucagon-like peptide-2 (GLP-2), interleukin-6 (IL-6), insulin, cortisol, leptin, and osteoprotogerin (OPG). Area under the curve was calculated in terms of the immediate (BASE, EE, R1, and R2) and short-term (BASE, FU1, FU2, and FU3) responses to exercise. ß-CTX, P1NP, and IL-6 responses to exercise were significantly lower in the immediate postexercise period with CHO feeding compared with PBO (ß-CTX: P = 0.028; P1NP: P = 0.021; IL-6: P = 0.036), although there was no difference in the short-term response (ß-CTX: P = 0.856; P1NP: P = 0.721; IL-6: P = 0.327). No other variable was significantly affected by CHO feeding during exercise. We conclude that CHO feeding during exercise attenuated the ß-CTX and P1NP responses in the hours but not days following exercise, indicating an acute effect of CHO feeding on bone turnover.


Asunto(s)
Huesos/efectos de los fármacos , Huesos/metabolismo , Carbohidratos de la Dieta/farmacología , Carrera/fisiología , Adulto , Biomarcadores/metabolismo , Resorción Ósea/sangre , Calcio/metabolismo , Colágeno Tipo I/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Consumo de Oxígeno/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Procolágeno/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...