Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Chem ; 11: 1223967, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744056

RESUMEN

Literature reports the chemical constituent yields of electronic nicotine delivery systems (ENDS) aerosol collected using a range of aerosol collection strategies. The number of puffs to deplete an ENDS product varies widely, but collections often consist of data from the first 50-100 puffs. However, it is not clear whether these discrete puff blocks are representative of constituent yields over the life of a pod. We aimed to assess the effect of differing aerosol collection strategies on reported yields for select chemical constituents in the aerosol of closed pod-based ENDS products. Constituents analyzed were chosen to reflect important classes of compounds from the Final Premarket Tobacco Product Application Guidance. Yields were normalized to total device mass loss (DML). Collection strategies that consisted of partial pod collection were valid for determining yields of constituents whose DML normalized yields were consistent for the duration of pod life. These included primary aerosol constituents, such as propylene glycol, glycerol, and nicotine, and whole pod yields could be determined from initial puff blocks. However, changes were observed in the yields of some metals, some carbonyl compounds, and glycidol over pod life in a chemical constituent and product dependent manner. These results suggest that collection strategies consisting of initial puff block collections require validation per chemical constituent/product and are not appropriate for chemical constituents with variable yields over pod life. Whole pod collection increased sensitivity and accuracy in determining metal, carbonyl, and glycidol yields compared to puff block-based collection methodologies for all products tested.

3.
Front Chem ; 11: 1212744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601911

RESUMEN

Leachable investigations are routinely undertaken across a range of sectors (e.g., pharmaceuticals, medical devices, etc.) to determine whether chemicals from a container closure system transfer into a product under normal conditions of use. For Electronic Nicotine Delivery Systems (ENDS) the container closure system includes all materials in contact with the e-liquid that is aerosolized and subsequently inhaled by the user. Currently, there is no guidance for conducting leachable studies for ENDS products, however, there are relevant guidance documents for orally inhaled drug products that can be applied to an ENDS container closure system. We present a case study of the analytical investigation of two leachable compounds identified in simulated leachable studies using aged JUULpods filled with unflavored e-liquid (PG/VG/nicotine/benzoic acid). Both compounds had limited toxicological information and were considered data deficient. A qualitative analysis of the aerosol collected from aged commercial JUULpods (Virginia Tobacco and Menthol), using a similar analytical method (LC-MS/MS) used in the simulated leachable studies, showed no trace or detectable levels of either leachable compound. Therefore, this qualitative analysis did not provide semi-quantitative values for the data-deficient leachable compounds necessary to support toxicological risk assessment. Further, no commercial authentic standards or reasonable synthetic route were available due to the molecular size and structural complexity of the compounds. Instead, method limits were established using an alternative approach to standard ICH guidelines. The experimentally determined method limit of quantitation, using spiked samples of simulated leachable e-liquid, provided conservative semi-quantitative values for each data deficient leachable compound in the aerosol that enabled a transfer efficiency from e-liquid to aerosol to be estimated. The transfer efficiency of each leachable compound was experimentally determined to be less than 2% based on the limit of quantitation, which then could be used to define a relevant exposure limit for the toxicological risk assessment. This work details a novel analytical approach for determining the transfer efficiency of data deficient leachable compounds from ENDS container closure systems into the ENDS aerosol to support toxicological health risk assessments.

4.
Biochemistry ; 55(23): 3329-40, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27226387

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that can cause nosocomial and chronic infections in immunocompromised patients. P. aeruginosa secretes a lipoxygenase, LoxA, but the biological role of this enzyme is currently unknown. LoxA is poorly similar in sequence to both soybean LOX-1 (s15-LOX-1) and human 15-LOX-1 (37 and 39%, respectively) yet has kinetics comparably fast versus those of s15-LOX-1 (at pH 6.5, Kcat = 181 ± 6 s(-1) and Kcat/KM = 16 ± 2 µM(-1) s(-1)). LoxA is capable of efficiently catalyzing the peroxidation of a broad range of free fatty acid (FA) substrates (e.g., AA and LA) with high positional specificity, indicating a 15-LOX. Its mechanism includes hydrogen atom abstraction [a kinetic isotope effect (KIE) of >30], yet LoxA is a poor catalyst against phosphoester FAs, suggesting that LoxA is not involved in membrane decomposition. LoxA also does not react with 5- or 15-HETEs, indicating poor involvement in lipoxin production. A LOX high-throughput screen of the LOPAC library yielded a variety of low-micromolar inhibitors; however, none selectively targeted LoxA over the human LOX isozymes. With respect to cellular activity, the level of LoxA expression is increased when P. aeruginosa undergoes the transition to a biofilm mode of growth, but LoxA is not required for biofilm growth on abiotic surfaces. However, LoxA does appear to be required for biofilm growth in association with the host airway epithelium, suggesting a role for LoxA in mediating bacterium-host interactions during colonization.


Asunto(s)
Araquidonato 15-Lipooxigenasa/química , Araquidonato 15-Lipooxigenasa/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Inhibidores de la Lipooxigenasa/metabolismo , Pseudomonas aeruginosa/enzimología , Secuencia de Aminoácidos , Animales , Formación de Anticuerpos , Araquidonato 15-Lipooxigenasa/inmunología , Humanos , Cinética , Conejos , Especificidad por Sustrato
5.
Anal Biochem ; 476: 45-50, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25712042

RESUMEN

Lipoxygenases (LOXs) regulate inflammation through the production of a variety of molecules whose specific downstream effects are not entirely understood due to the complexity of the inflammation pathway. The generation of these biomolecules can potentially be inhibited and/or allosterically regulated by small synthetic molecules. The current work describes the first mass spectrometric high-throughput method for identifying small molecule LOX inhibitors and LOX allosteric effectors that change the substrate preference of human lipoxygenase enzymes. Using a volatile buffer and an acid-labile detergent, enzymatic products can be directly detected using high-performance liquid chromatography-mass spectrometry (HPLC-MS) without the need for organic extraction. The method also reduces the required enzyme concentration compared with traditional ultraviolet (UV) absorbance methods by approximately 30-fold, allowing accurate binding affinity measurements for inhibitors with nanomolar affinity. The procedure was validated using known LOX inhibitors and the allosteric effector 13(S)-hydroxy-9Z,11E-octadecadienoic acid (13-HODE).


Asunto(s)
Inhibidores de la Lipooxigenasa/química , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión , Humanos , Ácidos Linoleicos/química , Estructura Molecular , Especificidad por Sustrato
6.
PLoS One ; 9(8): e104094, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25111178

RESUMEN

Lipoxygenase (LOX) enzymes catalyze the hydroperoxidation of arachidonic acid and other polyunsaturated fatty acids to hydroxyeicosatetraenoic acids with varying positional specificity to yield important biological signaling molecules. Human epithelial 15-lipoxygenase-2 (15-LOX-2) is a highly specific LOX isozyme that is expressed in epithelial tissue and whose activity has been correlated with suppression of tumor growth in prostate and other epithelial derived cancers. Despite the potential utility of an inhibitor to probe the specific role of 15-LOX-2 in tumor progression, no such potent/specific 15-LOX-2 inhibitors have been reported to date. This study employs high throughput screening to identify two novel, specific 15-LOX-2 inhibitors. MLS000545091 is a mixed-type inhibitor of 15-LOX-2 with a Ki of 0.9+/-0.4 µM and has a 20-fold selectivity over 5-LOX, 12-LOX, 15-LOX-1, COX-1, and COX-2. MLS000536924 is a competitive inhibitor with a Ki of 2.5+/-0.5 µM and also possesses 20-fold selectivity toward 15-LOX-2 over the other oxygenases, listed above. Finally, neither compound possesses reductive activity towards the active-site ferrous ion.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Ensayos Analíticos de Alto Rendimiento , Inhibidores de la Lipooxigenasa/farmacología , Araquidonato 15-Lipooxigenasa/química , Evaluación Preclínica de Medicamentos , Epitelio/enzimología , Humanos , Cinética , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Conformación Proteica
7.
J Med Chem ; 57(2): 495-506, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24393039

RESUMEN

Human lipoxygenases (LOXs) are a family of iron-containing enzymes which catalyze the oxidation of polyunsaturated fatty acids to provide the corresponding bioactive hydroxyeicosatetraenoic acid (HETE) metabolites. These eicosanoid signaling molecules are involved in a number of physiologic responses such as platelet aggregation, inflammation, and cell proliferation. Our group has taken a particular interest in platelet-type 12-(S)-LOX (12-LOX) because of its demonstrated role in skin diseases, diabetes, platelet hemostasis, thrombosis, and cancer. Herein, we report the identification and medicinal chemistry optimization of a 4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide-based scaffold. Top compounds, exemplified by 35 and 36, display nM potency against 12-LOX, excellent selectivity over related lipoxygenases and cyclooxygenases, and possess favorable ADME properties. In addition, both compounds inhibit PAR-4 induced aggregation and calcium mobilization in human platelets and reduce 12-HETE in ß-cells.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Derivados del Benceno/síntesis química , Inhibidores de la Lipooxigenasa/síntesis química , Sulfonamidas/síntesis química , Animales , Derivados del Benceno/química , Derivados del Benceno/farmacología , Disponibilidad Biológica , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Calcio/metabolismo , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/enzimología , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Ratones , Agregación Plaquetaria/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología
8.
J Med Chem ; 54(15): 5485-97, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21739938

RESUMEN

We report the discovery of novel small molecule inhibitors of platelet-type 12-human lipoxygenase, which display nanomolar activity against the purified enzyme, using a quantitative high-throughput screen (qHTS) on a library of 153607 compounds. These compounds also exhibit excellent specificity, >50-fold selectivity vs the paralogues, 5-human lipoxygenase, reticulocyte 15-human lipoxygenase type-1, and epithelial 15-human lipoxygenase type-2, and >100-fold selectivity vs ovine cyclooxygenase-1 and human cyclooxygenase-2. Kinetic experiments indicate this chemotype is a noncompetitive inhibitor that does not reduce the active site iron. Moreover, chiral HPLC separation of two of the racemic lead molecules revealed a strong preference for the (-)-enantiomers (IC(50) of 0.43 ± 0.04 and 0.38 ± 0.05 µM) compared to the (+)-enantiomers (IC(50) of >25 µM for both), indicating a fine degree of selectivity in the active site due to chiral geometry. In addition, these compounds demonstrate efficacy in cellular models, which underscores their relevance to disease modification.


Asunto(s)
Araquidonato 12-Lipooxigenasa/efectos de los fármacos , Inhibidores de la Lipooxigenasa/farmacología , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/antagonistas & inhibidores , Animales , Plaquetas/enzimología , Humanos , Islotes Pancreáticos/efectos de los fármacos , Cinética , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/farmacocinética , Ratones , Ovinos , Estereoisomerismo , Relación Estructura-Actividad
9.
J Med Chem ; 53(20): 7392-404, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20866075

RESUMEN

There are a variety of lipoxygenases in the human body (hLO), each having a distinct role in cellular biology. Human reticulocyte 15-lipoxygenase-1 (15-hLO-1), which catalyzes the dioxygenation of 1,4-cis,cis-pentadiene-containing polyunsaturated fatty acids, is implicated in a number of diseases including cancer, atherosclerosis, and neurodegenerative conditions. Despite the potential therapeutic relevance of this target, few inhibitors have been reported that are both potent and selective. To this end, we have employed a quantitative high-throughput (qHTS) screen against ∼74000 small molecules in search of reticulocyte 15-hLO-1 selective inhibitors. This screen led to the discovery of a novel chemotype for 15-hLO-1 inhibition, which displays nM potency and is >7500-fold selective against the related isozymes, 5-hLO, platelet 12-hLO, epithelial 15-hLO-2, ovine cyclooxygenase-1, and human cyclooxygenase-2. In addition, kinetic experiments were performed which indicate that this class of inhibitor is tight binding, reversible, and appears not to reduce the active-site ferric ion.


Asunto(s)
Inhibidores de la Lipooxigenasa , Oxadiazoles/síntesis química , Reticulocitos/enzimología , Alquinos/síntesis química , Alquinos/química , Araquidonato 15-Lipooxigenasa/química , Benzoatos/síntesis química , Benzoatos/química , Sitios de Unión , Ésteres , Humanos , Cinética , Modelos Moleculares , Naftalenos/síntesis química , Naftalenos/química , Oxadiazoles/química , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Sulfuros/síntesis química , Sulfuros/química , Tiofenos/síntesis química , Tiofenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...