Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 31: 101110, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37822719

RESUMEN

SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.

2.
Mol Ther ; 31(11): 3127-3145, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37735876

RESUMEN

In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.


Asunto(s)
Vectores Genéticos , Neoplasias , Interferencia de ARN , Vectores Genéticos/genética , Terapia Genética , Técnicas de Transferencia de Gen , Neoplasias/genética , Neoplasias/terapia
3.
J Biol Chem ; 299(6): 104749, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100284

RESUMEN

The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09, provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV)-an orthopox virus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding shows that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.


Asunto(s)
Antivirales , COVID-19 , Mpox , Vaccinia , Animales , Ratones , Antivirales/farmacología , Mpox/tratamiento farmacológico , SARS-CoV-2/efectos de los fármacos , Vaccinia/tratamiento farmacológico , Virus Vaccinia/efectos de los fármacos
4.
Front Immunol ; 14: 1099459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969187

RESUMEN

Introduction: Adipocytes in the tumour microenvironment are highly dynamic cells that have an established role in tumour progression, but their impact on anti-cancer therapy resistance is becoming increasingly difficult to overlook. Methods: We investigated the role of adipose tissue and adipocytes in response to oncolytic virus (OV) therapy in adipose-rich tumours such as breast and ovarian neoplasms. Results: We show that secreted products in adipocyte-conditioned medium significantly impairs productive virus infection and OV-driven cell death. This effect was not due to the direct neutralization of virions or inhibition of OV entry into host cells. Instead, further investigation of adipocyte secreted factors demonstrated that adipocyte-mediated OV resistance is primarily a lipid-driven phenomenon. When lipid moieties are depleted from the adipocyte-conditioned medium, cancer cells are re-sensitized to OV-mediated destruction. We further demonstrated that blocking fatty acid uptake by cancer cells, in a combinatorial strategy with virotherapy, has clinical translational potential to overcome adipocyte-mediated OV resistance. Discussion: Our findings indicate that while adipocyte secreted factors can impede OV infection, the impairment of OV treatment efficacy can be overcome by modulating lipid flux in the tumour milieu.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Ováricas , Humanos , Femenino , Microambiente Tumoral , Medios de Cultivo Condicionados , Virus Oncolíticos/fisiología , Neoplasias Ováricas/terapia , Lípidos
5.
Nat Commun ; 13(1): 1898, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393414

RESUMEN

Recent advances in cancer therapeutics clearly demonstrate the need for innovative multiplex therapies that attack the tumour on multiple fronts. Oncolytic or "cancer-killing" viruses (OVs) represent up-and-coming multi-mechanistic immunotherapeutic drugs for the treatment of cancer. In this study, we perform an in-vitro screen based on virus-encoded artificial microRNAs (amiRNAs) and find that a unique amiRNA, herein termed amiR-4, confers a replicative advantage to the VSVΔ51 OV platform. Target validation of amiR-4 reveals ARID1A, a protein involved in chromatin remodelling, as an important player in resistance to OV replication. Virus-directed targeting of ARID1A coupled with small-molecule inhibition of the methyltransferase EZH2 leads to the synthetic lethal killing of both infected and uninfected tumour cells. The bystander killing of uninfected cells is mediated by intercellular transfer of extracellular vesicles carrying amiR-4 cargo. Altogether, our findings establish that OVs can serve as replicating vehicles for amiRNA therapeutics with the potential for combination with small molecule and immune checkpoint inhibitor therapy.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , MicroARNs/genética , Neoplasias/terapia , Virus Oncolíticos/genética
6.
Mol Ther ; 30(5): 1885-1896, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34687845

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic requires the continued development of safe, long-lasting, and efficacious vaccines for preventive responses to major outbreaks around the world, and especially in isolated and developing countries. To combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we characterize a temperature-stable vaccine candidate (TOH-Vac1) that uses a replication-competent, attenuated vaccinia virus as a vector to express a membrane-tethered spike receptor binding domain (RBD) antigen. We evaluate the effects of dose escalation and administration routes on vaccine safety, efficacy, and immunogenicity in animal models. Our vaccine induces high levels of SARS-CoV-2 neutralizing antibodies and favorable T cell responses, while maintaining an optimal safety profile in mice and cynomolgus macaques. We demonstrate robust immune responses and protective immunity against SARS-CoV-2 variants after only a single dose. Together, these findings support further development of our novel and versatile vaccine platform as an alternative or complementary approach to current vaccines.


Asunto(s)
COVID-19 , Vacunas , Animales , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunidad , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Linfocitos T
7.
J Vis Exp ; (174)2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34459810

RESUMEN

The emergence of the COVID-19 pandemic has increased the need for better serological detection methods to determine the epidemiologic impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The increasing number of SARS-CoV-2 infections raises the need for better antibody detection assays. Current antibody detection methods compromise sensitivity for speed or are sensitive but time-consuming. A large proportion of SARS-CoV-2-neutralizing antibodies target the receptor-binding domain (RBD), one of the primary immunogenic compartments of SARS-CoV-2. We have recently designed and developed a highly sensitive, bioluminescent-tagged RBD (NanoLuc HiBiT-RBD) to detect SARS-CoV-2 antibodies. The following text describes the procedure to produce the HiBiT-RBD complex and a fast assay to evaluate the presence of RBD-targeting antibodies using this tool. Due to the durability of the HiBiT-RBD protein product over a wide range of temperatures and the shorter experimental procedure that can be completed within 1 h, the protocol can be considered as a more efficient alternative to detect SARS-CoV-2 antibodies in patient serum samples.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/inmunología , Prueba de COVID-19 , Humanos , Pandemias , Glicoproteína de la Espiga del Coronavirus
8.
J Vis Exp ; (172)2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-34152313

RESUMEN

As the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, it has become evident that the presence of neutralizing antibodies against the virus may provide protection against future infection. Thus, as the creation and translation of effective COVID-19 vaccines continues at an unprecedented speed, the development of fast and effective methods to measure neutralizing antibodies against SARS-CoV-2 will become increasingly important to determine long-term protection against infection for both previously infected and immunized individuals. This paper describes a high-throughput protocol using vesicular stomatitis virus (VSV) pseudotyped with the SARS-CoV-2 spike protein to measure the presence of neutralizing antibodies in convalescent serum from patients who have recently recovered from COVID-19. The use of a replicating pseudotyped virus eliminates the necessity for a containment level 3 facility required for SARS-CoV-2 handling, making this protocol accessible to virtually any containment level 2 lab. The use of a 96-well format allows for many samples to be run at the same time with a short turnaround time of 24 h.


Asunto(s)
Anticuerpos Neutralizantes/análisis , Anticuerpos Antivirales/análisis , Prueba Serológica para COVID-19/métodos , COVID-19/inmunología , Imagen Óptica/métodos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas contra la COVID-19/inmunología , Humanos , Pruebas de Neutralización , Virus de la Estomatitis Vesicular Indiana/inmunología
9.
Nanomaterials (Basel) ; 11(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809836

RESUMEN

High-throughput detection strategies for antibodies against SARS-CoV-2 in patients recovering from COVID-19, or in vaccinated individuals, are urgently required during this ongoing pandemic. Serological assays are the most widely used method to measure antibody responses in patients. However, most of the current methods lack the speed, stability, sensitivity, and specificity to be selected as a test for worldwide serosurveys. Here, we demonstrate a novel NanoBiT-based serological assay for fast and sensitive detection of SARS-CoV-2 RBD-specific antibodies in sera of COVID-19 patients. This assay can be done in high-throughput manner at 384 samples per hour and only requires a minimum of 5 µL of serum or 10 ng of antibody. The stability of our NanoBiT reporter in various temperatures (4-42 °C) and pH (4-12) settings suggests the assay will be able to withstand imperfect shipping and handling conditions for worldwide seroepidemiologic surveillance in the post-vaccination period of the pandemic. Our newly developed rapid assay is highly accessible and may facilitate a more cost-effective solution for seroconversion screening as vaccination efforts progress.

10.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668756

RESUMEN

Despite sequence similarity to SARS-CoV-1, SARS-CoV-2 has demonstrated greater widespread virulence and unique challenges to researchers aiming to study its pathogenicity in humans. The interaction of the viral receptor binding domain (RBD) with its main host cell receptor, angiotensin-converting enzyme 2 (ACE2), has emerged as a critical focal point for the development of anti-viral therapeutics and vaccines. In this study, we selectively identify and characterize the impact of mutating certain amino acid residues in the RBD of SARS-CoV-2 and in ACE2, by utilizing our recently developed NanoBiT technology-based biosensor as well as pseudotyped-virus infectivity assays. Specifically, we examine the mutational effects on RBD-ACE2 binding ability, efficacy of competitive inhibitors, as well as neutralizing antibody activity. We also look at the implications the mutations may have on virus transmissibility, host susceptibility, and the virus transmission path to humans. These critical determinants of virus-host interactions may provide more effective targets for ongoing vaccines, drug development, and potentially pave the way for determining the genetic variation underlying disease severity.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Neutralizantes/inmunología , Antivirales/farmacología , Sitios de Unión , COVID-19/inmunología , Células HEK293 , Interacciones Microbiota-Huesped , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/química , Receptores Virales/metabolismo , SARS-CoV-2/efectos de los fármacos , Alineación de Secuencia , Tratamiento Farmacológico de COVID-19
11.
Mol Ther ; 29(6): 1984-2000, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33578036

RESUMEN

The ongoing COVID-19 pandemic has highlighted the immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 life cycle. We developed a bioluminescence-based bioreporter to interrogate the interaction between the SARS-CoV-2 viral spike (S) protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2). The bioreporter assay is based on a nanoluciferase complementation reporter, composed of two subunits, large BiT and small BiT, fused to the S receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. Using this bioreporter, we uncovered critical host and viral determinants of the interaction, including a role for glycosylation of asparagine residues within the RBD in mediating successful viral entry. We also demonstrate the importance of N-linked glycosylation to the RBD's antigenicity and immunogenicity. Our study demonstrates the versatility of our bioreporter in mapping key residues mediating viral entry as well as screening inhibitors of the ACE2-RBD interaction. Our findings point toward targeting RBD glycosylation for therapeutic and vaccine strategies against SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Anticuerpos Neutralizantes/farmacología , Bioensayo , Lectinas/farmacología , Receptores Virales/química , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Asparagina/química , Asparagina/metabolismo , Sitios de Unión , COVID-19/diagnóstico , COVID-19/inmunología , COVID-19/virología , Genes Reporteros , Glicosilación/efectos de los fármacos , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores Virales/antagonistas & inhibidores , Receptores Virales/genética , Receptores Virales/inmunología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
12.
Membranes (Basel) ; 10(9)2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-32872641

RESUMEN

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presents an urgent need for an effective vaccine. Molecular characterization of SARS-CoV-2 is critical to the development of effective vaccine and therapeutic strategies. In the present study, we show that the fusion of the SARS-CoV-2 spike protein receptor-binding domain to its transmembrane domain is sufficient to mediate trimerization. Our findings may have implications for vaccine development and therapeutic drug design strategies targeting spike trimerization. As global efforts for developing SARS-CoV-2 vaccines are rapidly underway, we believe this observation is an important consideration for identifying crucial epitopes of SARS-CoV-2.

13.
J Bacteriol ; 202(23)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32928929

RESUMEN

Members of the small multidrug resistance (SMR) efflux pump family known as SugE (recently renamed Gdx) are known for their narrow substrate selectivity to small guanidinium (Gdm+) compounds and disinfectant quaternary ammonium compounds (QACs). Gdx members have been identified on multidrug resistance plasmids in Gram-negative bacilli, but their functional role remains unclear, as few have been characterized. Here, we conducted a survey of sequenced proteobacterial plasmids that encoded one or more SugE/Gdx sequences in an effort to (i) identify the most frequently represented Gdx member(s) on these plasmids and their sequence diversity, (ii) verify if Gdx sequences possess a Gdm+ riboswitch that regulates their translation similarly to chromosomally encoded Gdx members, and (iii) determine the antimicrobial susceptibility profile of the most predominate Gdx member to various QACs and antibiotics in Escherichia coli strains BW25113 and KAM32. The results of this study determined 14 unique SugE sequences, but only one Gdx sequence, annotated as "SugE(p)," predominated among the >140 plasmids we surveyed. Enterobacterales plasmids carrying sugE(p) possessed a guanidine II riboswitch similar to the upstream region of E. coligdx Cloning and expression of sugE(p), gdx, and emrE sequences into a low-copy-number expression vector (pMS119EH) revealed significant increases in QAC resistance to a limited range of detergent-like QACs only when gdx and sugE(p) transformants were grown as biofilms. These findings suggest that sugE(p) presence on proteobacterial plasmids may be driven by species that frequently encounter Gdm+ and QAC exposure.IMPORTANCE This study characterized the function of antimicrobial-resistant phenotypes attributed to plasmid-encoded guanidinium-selective small multidrug resistance (Gdm/SugE) efflux pumps. These sequences are frequently monitored as biocide resistance markers in antimicrobial resistance surveillance studies. Our findings reveal that enterobacterial gdm sequences transmitted on plasmids possess a guanidine II riboswitch, which restricts transcript translation in the presence of guanidinium. Cloning and overexpression of this gdm sequence revealed that it confers higher resistance to quaternary ammonium compound (QAC) disinfectants (which possess guanidium moieties) when grown as biofilms. Since biofilms are commonly eradicated with QAC-containing compounds, the presence of this gene on plasmids and its biofilm-specific resistance are a growing concern for clinical and food safety prevention measures.


Asunto(s)
Biopelículas/efectos de los fármacos , Desinfectantes/farmacología , Escherichia coli/efectos de los fármacos , Guanidina/metabolismo , Plásmidos/genética , Proteobacteria/genética , Compuestos de Amonio Cuaternario/farmacología , Riboswitch/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/fisiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Plásmidos/metabolismo
14.
Cytokine Growth Factor Rev ; 56: 102-114, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32958389

RESUMEN

The transformation of healthy cells to malignant often drives them to become inherently susceptible to viral infection as a trade-off to achieve uninhibited growth and immune escape. Enter oncolytic viruses (OVs), an exciting class of viruses that specifically infect cancer cells, leaving healthy tissue unharmed. Unfortunately, there is more to this story. Tumours are much more than a group of cancer cells, the surrounding tumour microenvironment (TME) comprises a collection of cells which influence and nourish the development and spread of the tumour. While initially quite promising, OV therapy has been met with a myriad of barriers due to the unwelcoming nature of the TME. Riddled with immunosuppressive factors and physical barriers, many tumours have proven impenetrable by OVs. Herein, we review the diverse array of approaches being used to target each component of the TME from enhancing entry into specific tumour types, breaking through the dense tumour stroma, eliminating cancer stem cells, and activating the immune system. We highlight the value of combination approaches which have led to complete successes in several in vivo models, some of which have entered clinical development.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Neoplasias/terapia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...