Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Pediatr Nephrol ; 39(6): 1847-1858, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38196016

RESUMEN

BACKGROUND: We aimed to develop a tool for predicting HNF1B mutations in children with congenital abnormalities of the kidneys and urinary tract (CAKUT). METHODS: The clinical and laboratory data from 234 children and young adults with known HNF1B mutation status were collected and analyzed retrospectively. All subjects were randomly divided into a training (70%) and a validation set (30%). A random forest model was constructed to predict HNF1B mutations. The recursive feature elimination algorithm was used for feature selection for the model, and receiver operating characteristic curve statistics was used to verify its predictive effect. RESULTS: A total of 213 patients were analyzed, including HNF1B-positive (mut + , n = 109) and HNF1B-negative (mut - , n = 104) subjects. The majority of patients had mild chronic kidney disease. Kidney phenotype was similar between groups, but bilateral kidney anomalies were more frequent in the mut + group. Hypomagnesemia and hypermagnesuria were the most common abnormalities in mut + patients and were highly selective of HNF1B. Hypomagnesemia based on age-appropriate norms had a better discriminatory value than the age-independent cutoff of 0.7 mmol/l. Pancreatic anomalies were almost exclusively found in mut + patients. No subjects had hypokalemia; the mean serum potassium level was lower in the HNF1B cohort. The abovementioned, discriminative parameters were selected for the model, which showed a good performance (area under the curve: 0.85; sensitivity of 93.67%, specificity of 73.57%). A corresponding calculator was developed for use and validation. CONCLUSIONS: This study developed a simple tool for predicting HNF1B mutations in children and young adults with CAKUT.


Asunto(s)
Enfermedades Renales , Sistema Urinario , Anomalías Urogenitales , Reflujo Vesicoureteral , Niño , Humanos , Adulto Joven , Estudios Retrospectivos , Riñón/anomalías , Sistema Urinario/anomalías , Mutación , Enfermedades Renales/genética , Magnesio , Factor Nuclear 1-beta del Hepatocito/genética
2.
J Appl Genet ; 65(2): 287-301, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38180712

RESUMEN

Chromatinopathies (CPs), a group of rare inborn defects characterized by chromatin state imbalance, have evolved from initially resembling Cornelia de Lange syndrome to encompass a wide array of genetic diseases with diverse clinical presentations. The CPs classification now includes human developmental disorders caused by germline mutations in epigenes, genes that regulate the epigenome. Recent advances in next-generation sequencing have enabled the association of 154 epigenes with CPs, revealing distinctive DNA methylation patterns known as episignatures.It has been shown that episignatures are unique for a particular CP or share similarities among specific CP subgroup. Consequently, these episignatures have emerged as promising biomarkers for diagnosing and treating CPs, differentiating subtypes, evaluating variants of unknown significance, and facilitating targeted therapies tailored to the underlying epigenetic dysregulation.The following review was conducted to collect, summarize, and analyze data regarding CPs in such aspects as clinical evaluation encompassing long-term patient care, underlying epigenetic changes, and innovative molecular and bioinformatic methodologies that have been devised for the assessment of CPs. We have also shed light on promising novel treatment options that have surfaced in recent research and presented a synthesis of ongoing clinical trials, contributing to the current understanding of the dynamic and evolving nature of CPs investigation.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Metilación de ADN/genética , Biomarcadores
3.
Orphanet J Rare Dis ; 19(1): 32, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291488

RESUMEN

Vertebral malformations (VMs) pose a significant global health problem, causing chronic pain and disability. Vertebral defects occur as isolated conditions or within the spectrum of various congenital disorders, such as Klippel-Feil syndrome, congenital scoliosis, spondylocostal dysostosis, sacral agenesis, and neural tube defects. Although both genetic abnormalities and environmental factors can contribute to abnormal vertebral development, our knowledge on molecular mechanisms of numerous VMs is still limited. Furthermore, there is a lack of resource that consolidates the current knowledge in this field. In this pioneering review, we provide a comprehensive analysis of the latest research on the molecular basis of VMs and the association of the VMs-related causative genes with bone developmental signaling pathways. Our study identifies 118 genes linked to VMs, with 98 genes involved in biological pathways crucial for the formation of the vertebral column. Overall, the review summarizes the current knowledge on VM genetics, and provides new insights into potential involvement of biological pathways in VM pathogenesis. We also present an overview of available data regarding the role of epigenetic and environmental factors in VMs. We identify areas where knowledge is lacking, such as precise molecular mechanisms in which specific genes contribute to the development of VMs. Finally, we propose future research avenues that could address knowledge gaps.


Asunto(s)
Anomalías Múltiples , Hernia Diafragmática , Síndrome de Klippel-Feil , Escoliosis , Humanos , Columna Vertebral/anomalías , Columna Vertebral/patología , Anomalías Múltiples/patología , Síndrome de Klippel-Feil/patología , Hernia Diafragmática/patología
4.
Epilepsy Behav ; 150: 109535, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38118233

RESUMEN

AIM: To evaluate the effectiveness of the ketogenic diet treatment in a cohort of patients with drug-resistant epilepsy with a mutation in the DEPDC5 gene. MATERIALS AND METHODS: We followed four paediatric patients with drug resistant DEPDC5-related epilepsy through a ketogenic diet (KD) treatment course. We analyzed the following parameters of their clinical profiles: past medical history, clinical characteristics of seizure morphology, EEG records pre- and post-KD treatment, the results of MRI head and neurological and psychological examinations (pre-treatment and throughout treatment course). We evaluated the effectiveness of previous therapeutic approaches and the current treatment with ketogenic diet alongside results of neuroimaging studies. Effect of KD on co-morbid behavioural and psychiatric symptoms, as well as adverse effects from KD were also assessed. RESULTS: In three patients, the introduction of the ketogenic diet resulted in the cessation of seizures, while in 1 patient with co-morbid cortical dysplasia, epileptic seizures of lesser severity returned after an initial seizure-free period of several weeks. Further, 1 patient was able to transition to a KD-only treatment regimen. The remaining patients were able to reduce the number of antiseizure medicine (ASM) to a monotherapy. In all cases we observed improvements in EEG results. Our cohort included one patient whose MRI head showed cortical dysplasia. However, no patients demonstrated any neurological signs in neurological examination. Psychological examination showed normal intellectual development in all patients, although behavioral disorders and difficulties at school were observed. The introduction of KD treatment correlated with improvement in school performance and improved behavioral regulation. No clinically significant adverse events were observed. CONCLUSIONS: KD seems to be both effective and well tolerated in young patients with DEPDC5-related epilepsy, both as a monotherapy and as an adjunct to ASM. We recommend an early adoption of this therapeutic approach in this patient demographic. Our results demonstrate that the positive effects of KD treatment encompass improvements in general functioning, particularly in the context of school performance and behavior, in addition to the achievement of good seizure control.


Asunto(s)
Dieta Cetogénica , Epilepsia Refractaria , Epilepsia , Malformaciones del Desarrollo Cortical , Niño , Humanos , Dieta Cetogénica/métodos , Resultado del Tratamiento , Estudios Retrospectivos , Convulsiones
5.
Front Mol Biosci ; 10: 1250714, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37916192

RESUMEN

Background: Split-hand/foot malformation type 1 (SHFM1) refers to the group of rare congenital limb disorders defined by the absence or hypoplasia of the central rays of the autopods with or without accompanying anomalies, such as hearing loss, craniofacial malformation, and ectodermal dysplasia. Consequently, the condition is characterized by clinical variability that hinders diagnostic and counseling procedures. SHFM1 is caused by pathogenic variants affecting the DLX5/6 genes and/or their tissue-specific enhancers at the 7q21.3 locus. Herein, we report on seven patients from five unrelated Polish families affected by variable symptoms of the SHFM1 spectrum, all harboring 7q21.3 or 7q21.2-q21.3 rearrangements, and provide a genotype-phenotype correlation in the studied cohort. Methods: We applied GTG banding, array-based comparative genomic hybridization (aCGH), and whole-genome sequencing (WGS) in order to identify the causative aberrations in all affected patients. Results: The identified pathogenic structural variants included deletions and/or translocations involving the 7q21.3 locus, i.e., t(7;10)(q21.3;q22.2) and t(7;12)(q21.3;q21.2) in all affected individuals. Interestingly, a sporadic carrier of the latter aberration presented the SHFM1 phenotype with additional features overlapping with Baker-Gordon syndrome (BAGOS), which resulted from the translocation breakpoint at chromosome 12 within the SYT1 gene. Conclusion: Clinical variability of the studied cohort reflects the composition of the DLX5/6 regulatory elements that were dislocated from their target genes by chromosomal rearrangements. The correlation of our data with the previously published observations enabled us to update the phenotypic subregions and regulatory units within the SHFM1 locus. In addition, we present the first case of SHFM1 and BAGOS-like phenotype that resulted from translocation breakpoints at chromosomes 7 and 12, both of which were pathogenic, and consequently, we show the first evidence that BAGOS can also result from the regulatory loss-of-function SYT1 mutations. In this paper, we emphasize the utility of sequence-based approaches in molecular diagnostics of disorders caused by regulatory structural variants.

6.
Front Endocrinol (Lausanne) ; 14: 1149982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810882

RESUMEN

Osteogenesis imperfecta (OI) is a rare genetic disorder of the connective tissue. It presents with a wide spectrum of skeletal and extraskeletal features, and ranges in severity from mild to perinatal lethal. The disease is characterized by a heterogeneous genetic background, where approximately 85%-90% of cases have dominantly inherited heterozygous pathogenic variants located in the COL1A1 and COL1A2 genes. This paper presents the results of the first nationwide study, performed on a large cohort of 197 Polish OI patients. Variants were identified using a next-generation sequencing (NGS) custom gene panel and multiplex ligation probe amplification (MLPA) assay. The following OI types were observed: 1 (42%), 2 (3%), 3 (35%), and 4 (20%). Collagen type I pathogenic variants were reported in 108 families. Alterations were observed in α1 and α2 in 70% and 30% of cases, respectively. The presented paper reports 97 distinct causative variants and expands the OI database with 38 novel pathogenic changes. It also enabled the identification of the first glycine-to-tryptophan substitution in the COL1A1 gene and brought new insights into the clinical severity associated with variants localized in "lethal regions". Our results contribute to a better understanding of the clinical and genetic aspects of OI.


Asunto(s)
Colágeno Tipo I , Osteogénesis Imperfecta , Humanos , Colágeno Tipo I/genética , Osteogénesis Imperfecta/genética , Polonia/epidemiología , Cadena alfa 1 del Colágeno Tipo I , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento
7.
Genet Med ; 25(11): 100928, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37427568

RESUMEN

PURPOSE: HOXD13 is an important regulator of limb development. Pathogenic variants in HOXD13 cause synpolydactyly type 1 (SPD1). How different types and positions of HOXD13 variants contribute to genotype-phenotype correlations, penetrance, and expressivity of SPD1 remains elusive. Here, we present a novel cohort and a literature review to elucidate HOXD13 phenotype-genotype correlations. METHODS: Patients with limb anomalies suggestive of SPD1 were selected for analysis of HOXD13 by Sanger sequencing, repeat length analysis, and next-generation sequencing. Literature was reviewed for HOXD13 heterozygotes. Variants were annotated for phenotypic data. Severity was calculated, and cluster and decision-tree analyses were performed. RESULTS: We identified 98 affected members of 38 families featuring 11 different (likely) causative variants and 4 variants of uncertain significance. The most frequent (25/38) were alanine repeat expansions. Phenotypes ranged from unaffected heterozygotes to severe osseous synpolydactyly, with intra- and inter-familial heterogeneity and asymmetry. A literature review provided 160 evaluable affected members of 49 families with SPD1. Computer-aided analysis only corroborated a positive correlation between alanine repeat length and phenotype severity. CONCLUSION: Our findings support that HOXD13-protein condensation in addition to haploinsufficiency is the molecular pathomechanism of SPD1. Our data may, also, facilitate the interpretation of synpolydactyly radiographs by future automated tools.


Asunto(s)
Proteínas de Homeodominio , Sindactilia , Humanos , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Sindactilia/genética , Genotipo , Fenotipo , Linaje , Alanina/genética , Mutación
8.
Am J Med Genet A ; 191(1): 205-219, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36317839

RESUMEN

Many unbalanced large copy number variants reviewed in the paper are associated with syndromic orofacial clefts, including a 1.6 Mb deletion on chromosome 3q29. The current report presents a new family with this recurrent deletion identified via whole-exome sequencing and confirmed by array comparative genomic hybridization. The proband exhibited a more severe clinical phenotype than his affected mother, comprising right-sided cleft lip/alveolus and cleft palate, advanced dental caries, heart defect, hypospadias, psychomotor, and speech delay, and an intellectual disability. Data analysis from the 3q29 registry revealed that the 3q29 deletion increases the risk of clefting by nearly 30-fold. No additional rare and pathogenic nucleotide variants were identified that could explain the clefting phenotype and observed intrafamilial phenotypic heterogeneity. These data suggest that the 3q29 deletion may be the primary risk factor for clefting, with additional genomic variants located outside the coding sequences, methylation changes, or environmental exposure serving as modifiers of this risk. Additional studies, including whole-genome sequencing or methylation analyses, should be performed to identify genetic factors underlying the phenotypic variation associated with the recurrent 3q29 deletion.


Asunto(s)
Labio Leporino , Fisura del Paladar , Caries Dental , Masculino , Humanos , Labio Leporino/diagnóstico , Labio Leporino/genética , Fisura del Paladar/diagnóstico , Fisura del Paladar/genética , Secuenciación del Exoma , Hibridación Genómica Comparativa , Síndrome
9.
J Appl Genet ; 64(1): 125-134, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586055

RESUMEN

Partial 16p trisomy syndrome is a rare disorder typically characterized by psychomotor retardation, prenatal and postnatal growth deficiency, cleft palate, and facial dysmorphism, with some patients also presenting with heart defects and urogenital anomalies. Pure 16p13.3 duplications usually occur de novo, while those duplications that associate with partial monosomy result rather from parental chromosomal translocations. Due to the large size of the aberrations, the majority of patients are identified by standard chromosome analysis. In all published cases, the minimal-causative duplicated region encompasses the CREBBP gene. Here, we report on the patient presenting with psychomotor retardation, femoral hypoplasia, and some features of the partial 16p trisomy syndrome, who carries a complex de novo terminal 16p13.3 microduplication with an overlapping region of amplification without translocation or associated monosomy. In contrast to the previously reported cases, the duplicated region of the patient does not involve CREBBP and other neighboring genes; still, the observed pattern of dysmorphic features of the index is characteristic of the described syndrome. Based on the animal studies and other published cases, we discuss the possible role of the PDK1 and IGFALS genes in the development of limb anomalies, while IFT140 could contribute both to the observed femoral phenotype and heart abnormalities in the patient. To the best of our knowledge, we present a proband harboring the smallest terminal 16p13.3 duplication of the size below 3 Mb. Therefore, our proband with her detailed phenotypic description may be helpful for clinicians who consult patients with this syndrome.


Asunto(s)
Anomalías Múltiples , Cardiopatías Congénitas , Embarazo , Femenino , Humanos , Trisomía/genética , Anomalías Múltiples/genética , Deleción Cromosómica , Cardiopatías Congénitas/genética , Síndrome , Translocación Genética
10.
Eur J Med Genet ; 66(1): 104668, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36384198

RESUMEN

Multiple congenital anomalies-hypotonia-seizures syndrome type 1 (MCAHS1) is a rare autosomal recessive genetic disease belonging to glycosylphosphatidylinositols biosynthesis defects (GPIBD), a group of recessive disorders characterized by intellectual disability, hypotonia, and seizures. Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor and remodel cell proteins. These processes are highly conserved and fundamental in the metabolism of all eukaryotes, including humans. Here, we have reported a male patient presenting with hypotonia, intellectual disability, and epilepsy, who underwent whole exome sequencing (WES). The analysis revealed the presence of two deleterious variants in PIGN that encodes GPI ethanolamine phosphate transferase-1 - one novel (c.1247_1251delAAGTG; p.Glu416Glyfs*22), and one that has been previously reported in the medical literature (c.1434+5G>A) resulting in MCAHS1. The detailed clinical assessment followed by the medical literature review also pointed out transient macrosomia and unreported in MCAHS1 advanced bone age and postnatal tall stature. These symptoms suggest that MCAHS1 shares a phenotypic overlap with disorders associated with overgrowth. To conclude, our case report and summary of the medical literature may be helpful for clinicians and geneticists who diagnose patients presenting with hypotonia accompanied by tall stature, advanced bone age, and transient macrosomia.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Femenino , Humanos , Masculino , Discapacidad Intelectual/genética , Anomalías Múltiples/genética , Glicosilfosfatidilinositoles , Hipotonía Muscular/genética , Macrosomía Fetal , Fosfotransferasas/genética , Convulsiones/genética , Síndrome , Linaje , Mutación
11.
Front Pediatr ; 10: 990111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313893

RESUMEN

Cardio-facio-cutaneous syndrome (CFCS) belongs to the group of RASopathies, clinical disorders defined by disruptions in the RAS/MAPK signaling pathway. It is caused by heterozygous gain-of-function germline mutations in genes encoding protein kinases: BRAF, MAP2K1 (MEK1), MAP2K2 (MEK2), and in the GTPase-encoding gene KRAS. CFCS is characterized by craniofacial dysmorphic features, congenital heart defects, severe malnutrition, proportionate short stature, anomalies within the structure of skin and hair, and psychomotor disability. The pathophysiology of growth impairment is multifactorial with feeding difficulties, growth hormone deficiency, and insensitivity. Immunodeficiency has not been hitherto reported as an integral part of CFCS yet an increased activation of the RAS/MAPK signaling pathway may contribute to explaining the causal relationship between RASopathy and the dysfunctions within the B and T lymph cell compartments resulting in a deficiency in T cell costimulation and B cell maturation with impaired class switch recombination, somatic hypermutation, and high-affinity antibody production. We report on a boy born prematurely at 32 WGA, with the perinatal period complicated by pneumonia, respiratory distress syndrome, and valvular pulmonary stenosis. The boy suffered from recurrent pneumonia, obstructive bronchitis, sepsis, urinary tract infection, and recurrent fevers. He presented with severe hypotrophy, psychomotor disability, short stature, craniofacial dysmorphism, dental hypoplasia, sparse hair, and cryptorchidism. Whole genome sequencing showed a novel heterozygous pathogenic germline missense variant: c.364A > G; p.Asn122Asp in the MAP2K1 gene, supporting the diagnosis of CFCS. The immunological workup revealed hypogammaglobulinemia, IgG subclass, and specific antibody deficiency accompanied by decreased numbers of T helper cells and naive and memory B cells. Replacement immunoglobulin therapy with timely antibiotic prophylaxis were instituted. At the age of six years, growth hormone deficiency was diagnosed and the rGH therapy was started. The ever-increasing progress in genetic studies contributes to establishing the definitive CFCS diagnosis and sheds the light on the interrelated genotype-phenotype heterogeneity of RASopathies. Herein, we add new phenotypic features of predominating humoral immunodeficiency to the symptomatology of CFCS with a novel mutation in MAP2K1. While CFCS is a multifaceted disease, increased pediatricians' awareness is needed to prevent the delay in diagnostics and therapeutic interventions.

12.
Orphanet J Rare Dis ; 17(1): 325, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028842

RESUMEN

BACKGROUND: Split-hand/ foot malformation with long bone deficiency 3 (SHFLD3) is an extremely rare condition associated with duplications located on 17p13.3, which invariably encompasses the BHLHA9 gene. The disease inherits with variable expressivity and significant incomplete penetrance as high as 50%. RESULTS: We have detected 17p13.3 locus one-allele triplication in a male proband from family 1 (F1.1), and duplication in a male proband from family 2 (F2.1) applying array comparative genomic hybridization (array CGH). The rearrangements mapped to the following chromosomal regions-arr[GRCh38] 17p13.3(960254-1291856)×4 in F1.1 and arr[GRCh38] 17p13.3(1227482-1302716)×3 in F2.1. The targeted quantitative PCR revealed that the 17p13.3 locus was also duplicated in the second affected member from family 2 (F2.2; brother of F2.1). In the next step, we performed segregation studies using quantitative PCR and revealed that F1.1 inherited the triplication from his healthy father-F1.2, whereas the locus was unremarkable in the mother of F2.1 & F2.2 and the healthy son of F2.1. However, the duplication was present in a healthy daughter of F2.2, an asymptomatic carrier. The breakpoint analysis allowed to define the exact size and span of the duplicated region in Family 2, i.e., 78,948 bp chr17:1225063-1304010 (HG38). Interestingly, all symptomatic carriers from both families presented with variable SHFLD3 phenotype. The involvement of secondary modifying locus could not be excluded, however, the Sanger sequencing screening of BHLHA9 entire coding sequence was unremarkable for both families. CONCLUSIONS: We have shed light on the one-allele CNV triplication occurrence that should be considered when a higher probe (over duplication range) signal is noted. Second, all SHFLD3 patients were accurately described regarding infrequent limb phenotypes, which were highly variable even when familial. Of note, all symptomatic individuals were males. SHFLD3 still remains a mysterious ultra-rare disease and our findings do not answer crucial questions regarding the disease low penetrance, variable expression and heterogeneity. However, we have presented some clinical and molecular aspects that may be helpful in daily diagnostic routine, both dysmorphological and molecular assessment, of patients affected with SHFLD3.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Deformidades Congénitas de las Extremidades , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hibridación Genómica Comparativa , Femenino , Duplicación de Gen , Humanos , Deformidades Congénitas de las Extremidades/genética , Masculino , Fenotipo
13.
Front Genet ; 13: 931822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873489

RESUMEN

Ciliopathies are rare congenital disorders, caused by defects in the cilium, that cover a broad clinical spectrum. A subgroup of ciliopathies showing significant phenotypic overlap are known as skeletal ciliopathies and include Jeune asphyxiating thoracic dysplasia (JATD), Mainzer-Saldino syndrome (MZSDS), cranioectodermal dysplasia (CED), and short-rib polydactyly (SRP). Ciliopathies are heterogeneous disorders with >187 associated genes, of which some genes are described to cause more than one ciliopathy phenotype. Both the clinical and molecular overlap make accurate diagnosing of these disorders challenging. We describe two unrelated Polish patients presenting with a skeletal ciliopathy who share the same compound heterozygous variants in IFT140 (NM_014,714.4) r.2765_2768del; p.(Tyr923Leufs*28) and exon 27-30 duplication; p.(Tyr1152_Thr1394dup). Apart from overlapping clinical symptoms the patients also show phenotypic differences; patient 1 showed more resemblance to a Mainzer-Saldino syndrome (MZSDS) phenotype, while patient 2 was more similar to the phenotype of cranioectodermal dysplasia (CED). In addition, functional testing in patient-derived fibroblasts revealed a distinct cilium phenotyps for each patient, and strikingly, the cilium phenotype of CED-like patient 2 resembled that of known CED patients. Besides two variants in IFT140, in depth exome analysis of ciliopathy associated genes revealed a likely-pathogenic heterozygous variant in INTU for patient 2 that possibly affects the same IFT-A complex to which IFT140 belongs and thereby could add to the phenotype of patient 2. Taken together, by combining genetic data, functional test results, and clinical findings we were able to accurately diagnose patient 1 with "IFT140-related ciliopathy with MZSDS-like features" and patient 2 with "IFT140-related ciliopathy with CED-like features". This study emphasizes that identical variants in one ciliopathy associated gene can lead to a variable ciliopathy phenotype and that an in depth and integrated analysis of clinical, molecular and functional data is necessary to accurately diagnose ciliopathy patients.

14.
Mol Genet Genomics ; 297(5): 1343-1352, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35821352

RESUMEN

Herein, we report on a large Polish family presenting with a classical triphalangeal thumb-polysyndactyly syndrome (TPT-PS). This rare congenital limb anomaly is generally caused by microduplications encompassing the Sonic Hedgehog (SHH) limb enhancer, termed the zone of polarizing activity (ZPA) regulatory sequence (ZRS). Recently, a pathogenic variant in the pre-ZRS (pZRS), a conserved sequence located near the ZRS, has been described in a TPT-PS Dutch family. We performed targeted ZRS sequencing, array comparative genomic hybridization, and whole-exome sequencing. Next, we sequenced the recently described pZRS region. Finally, we performed a circular chromatin conformation capture-sequencing (4C-seq) assay on skin fibroblasts of one affected family member and control samples to examine potential alterations in the SHH regulatory domain and functionally characterize the identified variant. We found that all affected individuals shared a recently identified pathogenic point mutation in the pZRS region: NC_000007.14:g.156792782C>G (GRCh38/hg38), which is the same as in the Dutch family. The results of 4C-seq experiments revealed increased interactions within the whole SHH regulatory domain (SHH-LMBR1 TAD) in the patient compared to controls. Our study expands the number of TPT-PS families carrying a pathogenic alteration of the pZRS and underlines the importance of routine pZRS sequencing in the genetic diagnostics of patients with TPT-PS or similar phenotypes. The pathogenic mutation causative for TPT-PS in our patient gave rise to increased interactions within the SHH regulatory domain in yet unknown mechanism.


Asunto(s)
Anomalías Congénitas , Proteínas Hedgehog , Disostosis Mandibulofacial , Polidactilia , Hibridación Genómica Comparativa , Anomalías Congénitas/genética , Elementos de Facilitación Genéticos , Proteínas Hedgehog/genética , Humanos , Disostosis Mandibulofacial/genética , Mutación , Linaje , Pulgar
15.
J Appl Genet ; 63(3): 535-542, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35525889

RESUMEN

Mucopolysaccharidosis type IIIB (MPS IIIB or Sanfilippo syndrome type B) is an inherited metabolic disease caused by mutations in the NAGLU gene, encoding α-N-acetylglucosaminidase. Accumulation of undegraded heparan sulfate (one of glycosaminoglycans) arises from deficiency in this enzyme and leads to severe symptoms, especially related to dysfunctions of the central nervous system. Here, we describe a case of two siblings with highly diverse phenotypes, despite carrying the same mutations (c.1189 T > G/c.1211G > A (p.Phe397Val/p.Trp404Ter)) and similar residual activities of α-N-acetylglucosaminidase; the younger patient reveals more severe phenotype; thus, these differences cannot be explained by the age and progression of the disease. Surprisingly, the whole exome sequencing analysis indicated the presence of an additional mutation in one allele of the AUTS2 gene (c.157G > A (p.Ala53Thr)) in the younger patient but not in the older one. Since mutations in this gene are usually dominant and cause delayed development and intellectual disability, it is likely that the observed differences between the MPS IIIB siblings are due to the potentially pathogenic AUTS2 variant, present in one of them. This case confirms also that simultaneous occurrence of two ultra-rare diseases in one patient is actual, despite a low probability of such a combination. Moreover, it is worth noting that apart from the genotype-phenotype correlation and the importance of the residual activity of the deficient enzyme, efficiency of glycosaminoglycan synthesis and global secondary changes in expression of hundreds of genes may considerably modulate the course and severity of MPS, especially Sanfilippo disease.


Asunto(s)
Mucopolisacaridosis III , Alelos , Proteínas del Citoesqueleto/genética , Humanos , Mucopolisacaridosis III/diagnóstico , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/patología , Mutación , Fenotipo , Hermanos , Factores de Transcripción/genética
16.
Front Mol Biosci ; 9: 865494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35591945

RESUMEN

Background: Craniosynostosis (CS) represents a highly heterogeneous genetic condition whose genetic background has not been yet revealed. The abnormality occurs either in isolated form or syndromic, as an element of hundreds of different inborn syndromes. Consequently, CS may often represent a challenging diagnostic issue. Methods: We investigated a three-tiered approach (karyotyping, Sanger sequencing, followed by custom gene panel/chromosomal microarray analysis, and exome sequencing), coupled with prioritization of variants based on dysmorphological assessment and description in terms of human phenotype ontology. In addition, we have also performed a statistical analysis of the obtained clinical data using the nonparametric test χ2. Results: We achieved a 43% diagnostic success rate and have demonstrated the complexity of mutations' type harbored by the patients, which were either chromosomal aberrations, copy number variations, or point mutations. The majority of pathogenic variants were found in the well-known CS genes, however, variants found in genes associated with chromatinopathies or RASopathies are of particular interest. Conclusion: We have critically summarized and then optimised a cost-effective diagnostic algorithm, which may be helpful in a daily diagnostic routine and future clinical research of various CS types. Moreover, we have pinpointed the possible underestimated co-occurrence of CS and intellectual disability, suggesting it may be overlooked when intellectual disability constitutes a primary clinical complaint. On the other hand, in any case of already detected syndromic CS and intellectual disability, the possible occurrence of clinical features suggestive for chromatinopathies or RASopathies should also be considered.

17.
J Clin Med ; 11(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268281

RESUMEN

Are the maternal gene variants MTHFR: c.665C>T, MTHFR: c.1286A>C, MTR: c.2756A>G, MTRR: c.66A>G, RFC1: c.80C>T and TCN2: c.776G>C and blood markers of the folate pathway important factors in assessing the risk of fetal trisomy 21 (fetal-T21)? Twenty pregnant women with a high risk and twenty with a low risk of fetal-T21 underwent prenatal examination. Selected gene variants and folate pathway markers and pregnancy-associated plasma protein A (PAPP-A) and free ß-subunit of human chorionic gonadotropin ß (free-ß-hCG) multiple of the medians (MoMs) were determined. The distributions of the alternative alleles and genotypes of the gene variants did not differ between the studied groups. There was no relationship between PAPP-A and ß-hCG MoM values and the presence of allele alternative genotype variants. The occurrence of alternative variants of the selected genes and concentrations of most of the studied folate pathway markers may not play a crucial role in the risk of fetal-T21 in pregnant women. However, the relationships between erythrocyte folate concentrations and the occurrence of alternative variants: c.665C>T MTHFR and c.776G>C TCN2, as well as the methylmalonic acid concentration and the occurrence of alternative variant c.776G>C TCN2 in pregnant women with fetal-T21, encourage further research. So far, of the biochemical markers, maternal PAPP-A and ß-hCG MoM values remain independent risk factors for fetal-T21.

18.
Arch Med Sci ; 18(2): 353-364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35316923

RESUMEN

Introduction: Congenital hypogonadotropic hypogonadism results from a dysfunction of the hypothalamic-pituitary-gonadal axis, which is essential for the development and function of the reproductive system. It may be associated with anosmia, referred to as Kallmann syndrome, or a normal sense of smell. Numerous studies have proven that hypogonadotropic hypogonadism is not simply a monogenic Mendelian disease, but that more than one gene may be involved in its pathogenesis in a single patient. The oligogenic complex architecture underlying the disease is still largely unknown. Material and methods: Targeted next-generation sequencing (NGS) was used to screen for DNA variants in a cohort of 47 patients with congenital hypogonadotropic hypogonadism. The NGS panel consists of over 50 well-known and candidate genes, associated with hypogonadotropic state. Results: Here we report the identification of new oligogenic variants in SPRY4/SEMA3A, SRA1/SEMA7A, CHD7/SEMA7A, CCDC141/POLR3B/POLR3B, and PROKR2/SPRY4/NSMF. These genes are known to contribute to the phenotype of hypogonadotropic hypogonadism, yet our results point to potential new "partners" underlying digenic and trigenic patterns. Conclusions: The finding supports the importance of oligogenic inheritance and demonstrates the complexity of genetic architecture in hypogonadotropic hypogonadism. It also underlines the necessity for developing fine-tuned guidelines to provide a tool for adequate and precise sequence variant classification in non-Mendelian conditions.

19.
Am J Med Genet A ; 188(2): 642-647, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34773354

RESUMEN

Aniridia is usually an autosomal dominant, rare disorder characterized by a variable degree of hypoplasia or the absence of iris tissue, with additional ocular abnormalities. Pathogenic variants in the PAX6 gene are associated with aniridia in most patients. However, in up to 30% of individuals, disease results from 11p13 chromosomal rearrangements. Here we present a patient with a clinical diagnosis of partial aniridia born to consanguineous Polish parents. The parents were asymptomatic and ophthalmologically normal. We performed PAX6 sequencing, array comparative genomic hybridization, quantitative real-time PCR, and whole genome sequencing. aCGH revealed a homozygous deletion of the DCDC1 gene fragment in the patient. The same, but heterozygous deletion, was detected in each of the patient's asymptomatic parents and brother. In the presented family, the signs and symptoms of aniridia are observed only in the homozygous proband. Whole genome sequencing analysis was performed to determine other possible causes of the disease and did not detect any additional or alternative potentially pathogenic variant. We report a novel homozygous deletion located in the 11p13 region, which does not include the PAX6 gene or any known PAX6 enhancers. To our best knowledge, this is the first reported case of a patient presented with isolated aniridia carrying a homozygous microdeletion downstream of the PAX6 gene.


Asunto(s)
Aniridia , Proteínas del Ojo , Aniridia/diagnóstico , Aniridia/genética , Hibridación Genómica Comparativa , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Homocigoto , Humanos , Masculino , Factor de Transcripción PAX6/genética , Linaje , Eliminación de Secuencia
20.
J Med Genet ; 59(3): 209-219, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34782442

RESUMEN

Clubfoot (talipes equinovarus) is a congenital malformation affecting muscles, bones, connective tissue and vascular or neurological structures in limbs. It has a complex aetiology, both genetic and environmental. To date, the most important findings in clubfoot genetics involve PITX1 variants, which were linked to clubfoot phenotype in mice and humans. Additionally, copy number variations encompassing TBX4 or single nucleotide variants in HOXC11, the molecular targets of the PITX1 transcription factor, were linked to the clubfoot phenotype. In general, genes of cytoskeleton and muscle contractile apparatus, as well as components of the extracellular matrix and connective tissue, are frequently linked with clubfoot aetiology. Last but not least, an equally important element, that brings us closer to a better understanding of the clubfoot genotype/phenotype correlation, are studies on the two known animal models of clubfoot-the pma or EphA4 mice. This review will summarise the current state of knowledge of the molecular basis of this congenital malformation.


Asunto(s)
Pie Equinovaro , Animales , Pie Equinovaro/genética , Variaciones en el Número de Copia de ADN , Estudios de Asociación Genética , Proteínas de Homeodominio/genética , Humanos , Ratones , Fenotipo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...