Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38373798

RESUMEN

Ciliary defects cause several ciliopathies, some of which have late onset, suggesting cilia are actively maintained. Still, we have a poor understanding of the mechanisms underlying their maintenance. Here, we show Drosophila melanogaster IFT88 (DmIFT88/nompB) continues to move along fully formed sensory cilia. We further identify Inactive, a TRPV channel subunit involved in Drosophila hearing and negative-gravitaxis behaviour, and a yet uncharacterised Drosophila Guanylyl Cyclase 2d (DmGucy2d/CG34357) as DmIFT88 cargoes. We also show DmIFT88 binding to the cyclase´s intracellular part, which is evolutionarily conserved and mutated in several degenerative retinal diseases, is important for the ciliary localisation of DmGucy2d. Finally, acute knockdown of both DmIFT88 and DmGucy2d in ciliated neurons of adult flies caused defects in the maintenance of cilium function, impairing hearing and negative-gravitaxis behaviour, but did not significantly affect ciliary ultrastructure. We conclude that the sensory ciliary function underlying hearing in the adult fly requires an active maintenance program which involves DmIFT88 and at least two of its signalling transmembrane cargoes, DmGucy2d and Inactive.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Cilios/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Audición
2.
PLoS Genet ; 17(8): e1009752, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34411092

RESUMEN

The cilium, the sensing centre for the cell, displays an extensive repertoire of receptors for various cell signalling processes. The dynamic nature of ciliary signalling indicates that the ciliary entry of receptors and associated proteins must be regulated and conditional. To understand this process, we studied the ciliary localisation of the odour-receptor coreceptor (Orco), a seven-pass transmembrane protein essential for insect olfaction. Little is known about when and how Orco gets into the cilia. Here, using Drosophila melanogaster, we show that the bulk of Orco selectively enters the cilia on adult olfactory sensory neurons in two discrete, one-hour intervals after eclosion. A conditional loss of heterotrimeric kinesin-2 during this period reduces the electrophysiological response to odours and affects olfactory behaviour. We further show that Orco binds to the C-terminal tail fragments of the heterotrimeric kinesin-2 motor, which is required to transfer Orco from the ciliary base to the outer segment and maintain within an approximately four-micron stretch at the distal portion of the ciliary outer-segment. The Orco transport was not affected by the loss of critical intraflagellar transport components, IFT172/Oseg2 and IFT88/NompB, respectively, during the adult stage. These results highlight a novel developmental regulation of seven-pass transmembrane receptor transport into the cilia and indicate that ciliary signalling is both developmentally and temporally regulated.


Asunto(s)
Cilios/metabolismo , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Receptores Odorantes/metabolismo , Animales , Transporte Biológico , Proteínas Portadoras/metabolismo , Cilios/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Cinesinas/fisiología , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Transporte de Proteínas , Receptores Odorantes/fisiología , Olfato
3.
Semin Cell Dev Biol ; 110: 123-138, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33455859

RESUMEN

Centrosomes are composed of two orthogonally arranged centrioles surrounded by an electron-dense matrix called the pericentriolar material (PCM). Centrioles are cylinders with diameters of ~250 nm, are several hundred nanometres in length and consist of 9-fold symmetrically arranged microtubules (MT). In dividing animal cells, centrosomes act as the principal MT-organising centres and they also organise actin, which tunes cytoplasmic MT nucleation. In some specialised cells, the centrosome acquires additional critical structures and converts into the base of a cilium with diverse functions including signalling and motility. These structures are found in most eukaryotes and are essential for development and homoeostasis at both cellular and organism levels. The ultrastructure of centrosomes and their derived organelles have been known for more than half a century. However, recent advances in a number of techniques have revealed the high-resolution structures (at Å-to-nm scale resolution) of centrioles and have begun to uncover the molecular principles underlying their properties, including: protein components; structural elements; and biogenesis in various model organisms. This review covers advances in our understanding of the features and processes that are critical for the biogenesis of the evolutionarily conserved structures of the centrosomes. Furthermore, it discusses how variations of these aspects can generate diversity in centrosome structure and function among different species and even between cell types within a multicellular organism.


Asunto(s)
Centriolos/ultraestructura , Cilios/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Biogénesis de Organelos , Actinas/genética , Actinas/metabolismo , Animales , Biodiversidad , Evolución Biológica , Ciclo Celular/genética , Centriolos/metabolismo , Chlorophyta/genética , Chlorophyta/metabolismo , Chlorophyta/ultraestructura , Cilios/metabolismo , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Regulación de la Expresión Génica , Humanos , Proteínas Asociadas a Microtúbulos/clasificación , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Especificidad de la Especie , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
4.
Autophagy ; 17(7): 1729-1752, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32559118

RESUMEN

Turnover of cellular organelles, including endoplasmic reticulum (ER) and mitochondria, is orchestrated by an efficient cellular surveillance system. We have identified a mechanism for dual regulation of ER and mitochondria under stress. It is known that AMFR, an ER E3 ligase and ER-associated degradation (ERAD) regulator, degrades outer mitochondrial membrane (OMM) proteins, MFNs (mitofusins), via the proteasome and triggers mitophagy. We show that destabilized mitochondria are almost devoid of the OMM and generate "mitoplasts". This brings the inner mitochondrial membrane (IMM) in the proximity of the ER. When AMFR levels are high and the mitochondria are stressed, the reticulophagy regulatory protein RETREG1 participates in the formation of the mitophagophore by interacting with OPA1. Interestingly, OPA1 and other IMM proteins exhibit similar RETREG1-dependent autophagosomal degradation as AMFR, unlike most of the OMM proteins. The "mitoplasts" generated are degraded by reticulo-mito-phagy - simultaneously affecting dual organelle turnover.Abbreviations: AMFR/GP78: autocrine motility factor receptor; BAPTA: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; BFP: blue fluorescent protein; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; CNBr: cyanogen bromide; ER: endoplasmic reticulum; ERAD: endoplasmic-reticulum-associated protein degradation; FL: fluorescence, GFP: green fluorescent protein; HA: hemagglutinin; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; IMM: inner mitochondrial membrane; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN: mitofusin, MGRN1: mahogunin ring finger 1; NA: numerical aperature; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; PRNP/PrP: prion protein; RER: rough endoplasmic reticulum; RETREG1/FAM134B: reticulophagy regulator 1; RFP: red fluorescent protein; RING: really interesting new gene; ROI: region of interest; RTN: reticulon; SEM: standard error of the mean; SER: smooth endoplasmic reticulum; SIM: structured illumination microscopy; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STOML2: stomatin like 2; TOMM20: translocase of outer mitochondrial membrane 20; UPR: unfolded protein response.


Asunto(s)
Autofagosomas/metabolismo , GTP Fosfohidrolasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Lisosomas/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Elife ; 82019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31182187

RESUMEN

The centrosome is composed of two centrioles surrounded by a microtubule-nucleating pericentriolar material (PCM). Although centrioles are known to regulate PCM assembly, it is less known whether and how the PCM contributes to centriole assembly. Here we investigate the interaction between centriole components and the PCM by taking advantage of fission yeast, which has a centriole-free, PCM-containing centrosome, the SPB. Surprisingly, we observed that several ectopically-expressed animal centriole components such as SAS-6 are recruited to the SPB. We revealed that a conserved PCM component, Pcp1/pericentrin, interacts with and recruits SAS-6. This interaction is conserved and important for centriole assembly, particularly its elongation. We further explored how yeasts kept this interaction even after centriole loss and showed that the conserved calmodulin-binding region of Pcp1/pericentrin is critical for SAS-6 interaction. Our work suggests that the PCM not only recruits and concentrates microtubule-nucleators, but also the centriole assembly machinery, promoting biogenesis close by.


Asunto(s)
Antígenos/metabolismo , Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Animales , Animales Modificados Genéticamente , Antígenos/genética , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Microscopía Confocal , Microtúbulos/metabolismo , Unión Proteica , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Espermatozoides/citología , Espermatozoides/metabolismo , Imagen de Lapso de Tiempo/métodos
6.
Nat Cell Biol ; 20(8): 928-941, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013109

RESUMEN

Cilia are evolutionarily conserved structures with many sensory and motility-related functions. The ciliary base, composed of the basal body and the transition zone, is critical for cilia assembly and function, but its contribution to cilia diversity remains unknown. Hence, we generated a high-resolution structural and biochemical atlas of the ciliary base of four functionally distinct neuronal and sperm cilia types within an organism, Drosophila melanogaster. We uncovered a common scaffold and diverse structures associated with different localization of 15 evolutionarily conserved components. Furthermore, CEP290 (also known as NPHP6) is involved in the formation of highly diverse transition zone links. In addition, the cartwheel components SAS6 and ANA2 (also known as STIL) have an underappreciated role in basal body elongation, which depends on BLD10 (also known as CEP135). The differential expression of these cartwheel components contributes to diversity in basal body length. Our results offer a plausible explanation to how mutations in conserved ciliary base components lead to tissue-specific diseases.


Asunto(s)
Centriolos/metabolismo , Cilios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Espermatozoides/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/genética , Centriolos/ultraestructura , Cilios/genética , Cilios/ultraestructura , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/ultraestructura , Femenino , Fertilidad , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Neuronas/ultraestructura , Fenotipo , Transducción de Señal , Olfato , Espermatozoides/ultraestructura , Taxia
7.
Methods Mol Biol ; 1454: 215-36, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27514925

RESUMEN

Centrioles and cilia are highly conserved eukaryotic organelles. Drosophila melanogaster is a powerful genetic and cell biology model organism, extensively used to discover underlying mechanisms of centrosome and cilia biogenesis and function. Defects in centrosomes and cilia reduce fertility and affect different sensory functions, such as proprioception, olfaction, and hearing. The fly possesses a large diversity of ciliary structures and assembly modes, such as motile, immotile, and intraflagellar transport (IFT)-independent or IFT-dependent assembly. Moreover, all the diverse ciliated cells harbor centrioles at the base of the cilia, called basal bodies, making the fly an attractive model to better understand the biology of this organelle. This chapter describes protocols to visualize centrosomes and cilia by fluorescence and electron microscopy.


Asunto(s)
Centrosoma/metabolismo , Cilios/metabolismo , Drosophila/fisiología , Animales , Transporte Biológico , Biomarcadores , Expresión Génica , Genes Reporteros , Proteínas Recombinantes de Fusión
8.
Cilia ; 5: 22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27382461

RESUMEN

The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various types of basal bodies and cilia, which are needed for sensory neuron and sperm function. Genetics, cell biology and behaviour studies in the fruit fly have unveiled new basal body components and revealed different modes of assembly and functions of basal bodies that are conserved in many other organisms, including human, green algae and plasmodium. Here we describe the various basal bodies of Drosophila, what is known about their composition, structure and function.

9.
Dev Cell ; 35(2): 222-35, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26481051

RESUMEN

Centrioles are essential for cilia and centrosome assembly. In centriole-containing cells, centrioles always form juxtaposed to pre-existing ones, motivating a century-old debate on centriole biogenesis control. Here, we show that trans-autoactivation of Polo-like kinase 4 (PLK4), the trigger of centriole biogenesis, is a critical event in the spatial control of that process. We demonstrate that centrioles promote PLK4 activation through its recruitment and local accumulation. Though centriole removal reduces the proportion of active PLK4, this is rescued by concentrating PLK4 to the peroxisome lumen. Moreover, while mild overexpression of PLK4 only triggers centriole amplification at the existing centriole, higher PLK4 levels trigger both centriolar and cytoplasmatic (de novo) biogenesis. Hence, centrioles promote their assembly locally and disfavor de novo synthesis. Similar mechanisms enforcing the local concentration and/or activity of other centriole components are likely to contribute to the spatial control of centriole biogenesis under physiological conditions.


Asunto(s)
Centriolos/genética , Proteínas de Drosophila/biosíntesis , Proteínas Serina-Treonina Quinasas/biosíntesis , Espermatogénesis/genética , Animales , Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Peroxisomas/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
10.
Nat Rev Mol Cell Biol ; 15(7): 433-52, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24954208

RESUMEN

Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Modelos Moleculares , Estabilidad Proteica , Estructura Secundaria de Proteína , Quinasa Tipo Polo 1
11.
Curr Opin Cell Biol ; 26: 96-106, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24529251

RESUMEN

Centrioles are microtubule (MT)-based cylinders that form centrosomes and can be modified into basal bodies that template the axoneme, the ciliary MT skeleton. These MT-based structures are present in all branches of the eukaryotic tree of life, where they have important sensing, motility and cellular architecture-organizing functions. Moreover, they are altered in several human conditions and diseases, including sterility, ciliopathies and cancer. Although the ultrastructure of centrioles and derived organelles has been known for over 50 years, the molecular basis of their remarkably conserved properties, such as their 9-fold symmetry, has only now started to be unveiled. Recent advances in imaging, proteomics and crystallography, allowed the building of 3D models of centrioles and derived structures with unprecedented molecular details, leading to a much better understanding of their assembly and function. Here, we cover progress in this field, focusing on the mechanisms of centriole and cilia assembly.


Asunto(s)
Centriolos/ultraestructura , Cilios/ultraestructura , Animales , Humanos , Microscopía de Fuerza Atómica , Microtúbulos/ultraestructura , Nanoestructuras , Orgánulos/ultraestructura
12.
Curr Biol ; 23(22): 2245-2254, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24184099

RESUMEN

Polo-like kinase 4 (PLK4) is a major player in centriole biogenesis: in its absence centrioles fail to form, while in excess leads to centriole amplification. The SCF-Slimb/ßTrCP-E3 ubiquitin ligase controls PLK4 levels through recognition of a conserved phosphodegron. SCF-Slimb/ßTrCP substrate binding and targeting for degradation is normally regulated by phosphorylation cascades, controlling complex processes, such as circadian clocks and morphogenesis. Here, we show that PLK4 is a suicide kinase, autophosphorylating in residues that are critical for SCF-Slimb/ßTrCP binding. We demonstrate a multisite trans-autophosphorylation mechanism, likely to ensure that both a threshold of PLK4 concentration is attained and a sequence of events is observed before PLK4 can autodestruct. First, we show that PLK4 trans-autophosphorylates other PLK4 molecules on both Ser293 and Thr297 within the degron and that these residues contribute differently for PLK4 degradation, the first being critical and the second maximizing auto-destruction. Second, PLK4 trans-autophosphorylates a phospho-cluster outside the degron, which regulates Thr297 phosphorylation, PLK4 degradation, and centriole number. Finally, we show the importance of PLK4-Slimb/ßTrCP regulation as it operates in both soma and germline. As ßTrCP, PLK4, and centriole number are deregulated in several cancers, our work provides novel links between centriole number control and tumorigenesis.


Asunto(s)
Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Regulación de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Serina/metabolismo , Treonina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Structure ; 20(11): 1801-4, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23141691

RESUMEN

Polo-like kinases (PLKs) are marked by C-terminal polo box modules with critical protein interaction and subcellular targeting roles. Slevin et al. in this issue of Structure reveal the architecture of a hidden set of polo boxes from the divergent PLK4, a critical player in centrosome duplication, shedding new light on the evolution of PLKs and their functionally related kinase ZYG-1.


Asunto(s)
Centriolos , Proteínas Serina-Treonina Quinasas/química , Humanos
14.
J Biol Chem ; 287(48): 40793-805, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23038268

RESUMEN

BACKGROUND: Dynein Light Chain 1 (LC8) has been shown to pull down tubulin subunits, suggesting that it interacts with microtubules. RESULTS: LC8 decorates microtubules in vitro and in Drosophila embryos, promotes microtubule assembly, and stabilizes microtubules both in vitro and in tissue-cultured cells. CONCLUSION: LC8 stabilizes microtubules. SIGNIFICANCE: Data provide the first evidence of a novel MAP-like function of LC8. Dynein light chain 1 (LC8), a highly conserved protein, is known to bind to a variety of different polypeptides. It functions as a dimer, which is inactivated through phosphorylation at the Ser-88 residue. A loss of LC8 function causes apoptosis in Drosophila embryos, and its overexpression induces malignant transformation of breast cancer cells. Here we show that LC8 binds to tubulin, promotes microtubule assembly, and induces the bundling of reconstituted microtubules in vitro. Furthermore, LC8 decorates microtubules both in Drosophila embryos and in HeLa cells, increases the microtubule stability, and promotes microtubule bundling in these cells. Microtubule stability influences a number of different cellular functions including mitosis and cell differentiation. The LC8 overexpression reduces the susceptibility of microtubules to cold and nocodazole-induced depolymerization in tissue-cultured cells and increases microtubule acetylation, suggesting that LC8 stabilizes microtubules. We also show that LC8 knockdown or transfection with inhibitory peptides destabilizes microtubules and inhibits bipolar spindle assembly in HeLa cells. In addition, LC8 knockdown leads to the mitotic block in HeLa cells. Furthermore, molecular docking analysis using the crystal structures of tubulin and LC8 dimer indicated that the latter may bind at α-ß tubulin junction in a protofilament at sites distinct from the kinesin and dynein binding sites. Together, we provide the first evidence of a novel microtubule-associated protein-like function of LC8 that could explain its reported roles in cellular metastasis and differentiation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Animales , Drosophila/química , Drosophila/genética , Proteínas de Drosophila/genética , Dineínas/genética , Cinética , Microtúbulos/química , Microtúbulos/genética , Unión Proteica
15.
Traffic ; 13(7): 979-91, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22486887

RESUMEN

Bulk flow constitutes a substantial part of the slow transport of soluble proteins in axons. Though the underlying mechanism is unclear, evidences indicate that intermittent, kinesin-based movement of large protein-aggregates aids this process. Choline acetyltransferase (ChAT), a soluble enzyme catalyzing acetylcholine synthesis, propagates toward the synapse at an intermediate, slow rate. The presynaptic enrichment of ChAT requires heterotrimeric kinesin-2, comprising KLP64D, KLP68D and DmKAP, in Drosophila. Here, we show that the bulk flow of a recombinant Green Fluorescent Protein-tagged ChAT (GFP::ChAT), in Drosophila axons, lacks particulate features. It occurs for a brief period during the larval stages. In addition, both the endogenous ChAT and GFP::ChAT directly bind to the KLP64D tail, which is essential for the GFP::ChAT entry and anterograde flow in axon. These evidences suggest that a direct interaction with motor proteins could regulate the bulk flow of soluble proteins, and thus establish their asymmetric distribution.


Asunto(s)
Transporte Axonal/fisiología , Colina O-Acetiltransferasa/metabolismo , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Axonal/genética , Proteínas Portadoras/metabolismo , Neuronas Colinérgicas/enzimología , Neuronas Colinérgicas/metabolismo , Drosophila/enzimología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Recuperación de Fluorescencia tras Fotoblanqueo , Cinesinas/química , Larva/enzimología , Larva/metabolismo , Proteínas Asociadas a Microtúbulos/química , Dominios y Motivos de Interacción de Proteínas , Sinapsis/enzimología , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...