Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674972

RESUMEN

The development of sustainable materials from the valorization of waste is a good alternative to reducing the negative environmental impact of plastic packaging. The objectives of this study were to develop and characterize pectin-based composite films incorporated with cork or cork with either coffee grounds or walnut shells, as well as to test the films' genotoxicity, antioxidant properties, and biodegradation capacity in soil and seawater. The addition of cork, coffee grounds, or walnut shells modified the films' characteristics. The results showed that those films were thicker (0.487 ± 0.014 mm to 0.572 ± 0.014 mm), more opaque (around 100%), darker (L* = 25.30 ± 0.78 to 33.93 ± 0.84), and had a higher total phenolic content (3.17 ± 0.01 mg GA/g to 4.24 ± 0.02 mg GA/g). On the other hand, the films incorporated only with cork showed higher values of elongation at break (32.24 ± 1.88% to 36.30 ± 3.25%) but lower tensile strength (0.91 ± 0.19 MPa to 1.09 ± 0.08 MPa). All the films presented more heterogeneous and rougher microstructures than the pectin film. This study also revealed that the developed films do not contain DNA-reactive substances and that they are biodegradable in soil and seawater. These positive properties could subsequently make the developed films an interesting eco-friendly food packaging solution that contributes to the valorization of organic waste and by-products, thus promoting the circular economy and reducing the environmental impact of plastic materials.

2.
Gels ; 9(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37232962

RESUMEN

Comedogenic skin care receives little attention compared to the care or treatment of more serious acne manifestations. Traditional therapies may have limited success with potential side effects. Cosmetic care supported by the effect of a biostimulating laser may offer a desirable alternative. The aim of the study was to evaluate the biological effectiveness of combined cosmetic treatment with lasotherapy on comedogenic skin type using noninvasive bioengineering methods. Twelve volunteers with comedogenic skin type underwent a 28-week application of Lasocare Basic 645® cosmetic gel containing Lactoperoxidase and Lactoferrin in combination with laser therapy (Lasocare® method). The effect of treatment on skin condition was monitored using noninvasive diagnostic methods. The parameters were the amount of sebum, the pore count, the ultraviolet-induced red fluorescence assessment of comedonic lesions (percentage of the area and quantification of orange-red spots), hydration, transepidermal water loss, and pH. A statistically significant decrease in sebum production was observed on the skin of the treated volunteers, as well as a decrease in porphyrins, indicating the presence of Cutibacterium acnes populating comedones and causing enlarged pores. The balance of epidermal water in the skin was regulated adjusting the acidity of the skin coat in individual zones, which decreased the presence of Cutibacterium acnes. Cosmetic treatment in combination with the Lasocare® method successfully improved the condition of comedogenic skin. In addition to transient erythema, there were no other adverse effects. The chosen procedure appears to be a suitable and safe alternative to traditional treatment procedures known from dermatological practice.

3.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835267

RESUMEN

Antimicrobial hand gels have become extremely popular in recent years due to the COVID-19 pandemic. Frequent use of hand sanitising gel can lead to dryness and irritation of the skin. This work focuses on the preparation of antimicrobial acrylic acid (Carbomer)-based gels enhanced by non-traditional compounds-mandelic acid and essential oils-as a substitute for irritating ethanol. Physicochemical properties (pH and viscosity), stability and sensory attributes of the prepared gels were investigated. Antimicrobial activity against representative Gram-positive and Gram-negative bacteria and yeasts was determined. The prepared gels with mandelic acid and essential oil (cinnamon, clove, lemon, and thyme) proved to have antimicrobial activity and even better organoleptic properties than commercial ethanol-based antimicrobial gel. Further, results confirmed that the addition of mandelic acid had a desirable effect on gel properties (antimicrobial, consistency, stability). It has been shown that the essential oil/mandelic acid combination can be a dermatologically beneficial hand sanitiser compared to commercial products. Thus, the produced gels can be used as a natural alternative to alcohol-based daily hand hygiene sanitisers.


Asunto(s)
Antiinfecciosos , COVID-19 , Desinfectantes para las Manos , Aceites Volátiles , Humanos , Antibacterianos , Pandemias , Bacterias Gramnegativas , Bacterias Grampositivas , Etanol , Geles , Pruebas de Sensibilidad Microbiana
4.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36674766

RESUMEN

Polyhydroxyalkanoates (PHAs) are widely used in medical and potentially in other applications due to their biocompatibility and biodegradability. Understanding PHA biosynthetic pathways may lead to the detection of appropriate conditions (substrates) for producing a particular PHA type by a specific microbial strain. The aim of this study was to establish a method enabling potentially interesting PHA bacterial producers to be found. In the study, all four classes of PHA synthases and other genes involved in PHA formation (fabG, phaA, phaB, phaG, and phaJ) were detected by PCR in 64 bacterial collection strains and food isolates. Acinetobacter, Bacillus, Cupriavidus, Escherichia, Klebsiella, Lelliottia, Lysinibacillus, Mammaliicoccus, Oceanobacillus, Pantoea, Peribacillus, Priestia, Pseudomonas, Rahnella, Staphylococcus, and Stenotrophomonas genera were found among these strains. Fructose, glucose, sunflower oil, and propionic acid were utilized as carbon sources and PHA production was detected by Sudan black staining, Nile blue staining, and FTIR methods. The class I synthase and phaA genes were the most frequently found, indicating the strains' ability to synthesize PHA from carbohydrates. Among the tested bacterial strains, the Pseudomonas genus was identified as able to utilize all tested carbon sources. The Pseudomonas extremorientalis strain was determined as a prospect for biotechnology applications.


Asunto(s)
Bacillus , Polihidroxialcanoatos , Bacterias/metabolismo , Bacillus/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Carbono/metabolismo
5.
J Sci Food Agric ; 103(3): 1097-1104, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35522046

RESUMEN

BACKGROUND: There has recently been increased interest in biodegradable and sustainable packaging within the food industry. Biopolymer materials based on renewable biomass can be used as alternatives to conventional plastic packaging. A corn protein, zein, possesses excellent film-forming properties because of its hydrophobic nature. It can be used for making edible films and for producing nanofibrous layers. Combination with polysaccharides like chitosan offers promising prospects for the production of delivery systems for the controlled release of active substances. The current trend is to minimize the content of chemical additives; thus essential oils are suitable alternatives to synthetic antimicrobials. RESULTS: This study aimed to develop various zein/chitosan-based film-forming solutions, films, and coatings with antimicrobial substances to prepare active food packaging. Thymol and three essential oils (thyme, cinnamon, oregano) were applied as bioactive ingredients against bacteria, yeasts, and fungi. The incorporation of these natural active compounds led to a decrease in particle size in most film-forming solutions and a reduction of zeta potential compared to controls. Release of the bioactive compound into an aqueous environment was proved by antimicrobial test. A zein/chitosan-based coating with thymol was applied on fresh strawberries. Microbiological analysis over 10 days confirmed the efficient control of bacterial and fungal growth. CONCLUSION: Zein/chitosan (7:1) systems are suitable as bioactive compound carriers to make barriers and to prevent moisture loss, ensuring microbial food quality and prolonging the shelf life of fruits. These systems can serve as sustainable active food packaging. © 2022 Society of Chemical Industry.


Asunto(s)
Antiinfecciosos , Quitosano , Aceites Volátiles , Zeína , Aceites Volátiles/química , Embalaje de Alimentos , Timol , Quitosano/química , Zeína/química , Antiinfecciosos/química
6.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613867

RESUMEN

Nanofibers have become a promising material in many industries in recent years, mainly due to their various properties. The only disadvantage of nanofibers as a potential filtration membrane is their short life due to clogging by bacteria in water treatment. The enrichment of nanofibers with active molecules could prevent these negative effects, represented by essential oils components such as Thymol, Eugenol, Linalool, Cinnamaldehyde and Carvacrol. Our study deals with the preparation of electrospun polyvinylidene difluoride (PVDF)-based nanofibers with incorporated essential oils, their characterization, testing their antibacterial properties and the evaluation of biofilm formation on the membrane surface. The study of the nanofibers' morphology points to the nanofibers' diverse fiber diameters ranging from 570 to 900 nm. Besides that, the nanofibers were detected as hydrophobic material with wettability over 130°. The satisfactory results of PVDF membranes were observed in nanofibers enriched with Thymol and Eugenol that showed their antifouling activity against the tested bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Therefore, these PVDF membranes could find potential applications as filtration membranes in healthcare or the environment.


Asunto(s)
Incrustaciones Biológicas , Nanofibras , Aceites Volátiles , Aceites Volátiles/farmacología , Eugenol/farmacología , Timol/farmacología , Incrustaciones Biológicas/prevención & control , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli
7.
ACS Appl Mater Interfaces ; 13(34): 41021-41033, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34405995

RESUMEN

The efficiency of filtration membranes is substantially lowered by bacterial attachments and potential fouling processes, which reduce their durability and lifecycle. The antibacterial and antifouling properties exhibited by the added materials play a substantial role in their application. We tested a material poly(vinylidene fluoride)-co-hexafluoropropylene (PDVF-co-HFP) based on an electrospun copolymer, where an agent was incorporated with a small amount of ester of glycerol consecutively with caprylic, capric, and lauric acids. Each of these three materials differing in the esters (1-monoacylglycerol, 1-MAG) used was prepared with three weighted concentrations of 1-MAG (1, 2, and 3 wt %). The presence of 1-MAG with an amphiphilic structure resulted in the hydrophilic character of the prepared materials that contributed to the filtration performance. The tested materials (membranes) were characterized with rheological, optical (scanning electron microscopy, SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and other methods to evaluate antibacterial and antifouling activities. The pure water flux was 6 times higher than that of the neat PVDF-co-HFP membrane when the added 1-MAG attained only 1 wt %. It was experimentally shown that the PVDF-co-HFP/1-MAG membrane with high wettability improved antibacterial activity and antifouling ability. This membrane is highly promising for water treatment due to the safety of antibacterial 1-MAG additives.


Asunto(s)
Antibacterianos/farmacología , Polímeros de Fluorocarbono/farmacología , Monoglicéridos/farmacología , Nanofibras/química , Polivinilos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Filtración/instrumentación , Polímeros de Fluorocarbono/química , Membranas Artificiales , Pruebas de Sensibilidad Microbiana , Monoglicéridos/química , Polivinilos/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Humectabilidad
8.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008810

RESUMEN

Zein is renewable plant protein with valuable film-forming properties that can be used as a packaging material. It is known that the addition of natural cross-linkers can enhance a film's tensile properties. In this study, we aimed to prepare antimicrobial zein-based films enriched with monolaurin, eugenol, oregano, and thyme essential oil. Films were prepared using the solvent casting technique from ethanol solution. Their physicochemical properties were investigated using structural, morphological, and thermal techniques. Polar and dispersive components were analyzed using two models to evaluate the effects on the surface free energy values. The antimicrobial activity was proven using a disk diffusion method and the suppression of bacterial growth was confirmed via a growth kinetics study with the Gompertz function. The films' morphological characteristics led to systems with uniform distribution of essential oils or eugenol droplets combined with a flat-plated structure of monolaurin. A unique combination of polyphenolic eugenol and amphiphilic monoglyceride provided highly stretchable films with enhanced barrier properties and efficiency against Gram-positive and Gram-negative bacteria, yeasts, and molds. The prepared zein-based films with tunable surface properties represent an alternative to non-renewable resources with a potential application as active packaging materials.


Asunto(s)
Eugenol/farmacología , Embalaje de Alimentos , Lauratos/farmacología , Monoglicéridos/farmacología , Aceites Volátiles/farmacología , Zeína/farmacología , Antibacterianos/farmacología , Antifúngicos/farmacología , Fenómenos Biomecánicos/efectos de los fármacos , Rastreo Diferencial de Calorimetría , Escherichia coli/efectos de los fármacos , Microscopía de Fuerza Atómica , Permeabilidad , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Vapor , Propiedades de Superficie , Humectabilidad
9.
Nanomaterials (Basel) ; 12(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35010000

RESUMEN

Wasted synthetic fabrics are a type of textile waste source; the reuse of them brings environmental protection and turns waste into a valuable material. In this work, the used nylon (polyamide) stockings were transmuted into a fine fibrous membrane via an electrospinning process. In addition, the safety antibacterial agent, monoacylglycerol (MAG), was incorporated into a recycled fibrous membrane. The results revealed that the neat, recycled polyamide (rPA) fibers with a hydrophobic surface could be converted into hydrophilic fibers by blending various amounts of MAG with rPA solution prior to electrospinning. The filtration efficiency and air/water vapor permeability of the two types of produced membranes, neat rPA, and rPA/MAG, were tested. Their filtration efficiency (E100) was more than 92% and 96%, respectively. The membranes were classified according to Standard EN1822, and therefore, the membranes rPA and rPA/MAG were assigned to the classes E10 and E11, respectively. The air permeability was not affected by the addition of MAG, and water vapor permeability was slightly enhanced. Based on the obtained data, prepared rPA/MAG fibrous membranes can be evaluated as antifouling against both tested bacterial strains and antimicrobial against S. aureus.

10.
Foods ; 11(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35010130

RESUMEN

Biofilm is a structured community of microorganisms adhering to surfaces of various polymeric materials used in food packaging. Microbes in the biofilm may affect food quality. However, the presence of biofilm can ensure biodegradation of discarded packaging. This work aims to evaluate a biofilm formation on the selected biodegradable polymer films: poly (lactic acid) (PLA), poly (butylene adipate-co-terephthalate) (PBAT), and poly (butylene succinate) (PBS) by selected bacterial strains; collection strains of Escherichiacoli, Staphylococcusaureus; and Bacillus pumilus, Bacillussubtilis, Bacillustequilensis, and Stenotrophomonasmaltophilia isolated from dairy products. Three different methods for biofilm evaluation were performed: the Christensen method, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and fluorescence microscopy. High biofilm formation was confirmed on the control PBS film, whereas low biofilm formation ability was observed on the PLA polymer sample. Furthermore, the films with incorporated antimicrobial compounds (thymol or eugenol) were also prepared. Antimicrobial activity and also reduction in biofilm formation on enriched polymer films were determined. Therefore, they were all proved to be antimicrobial and effective in reducing biofilm formation. These films can be used to prepare novel active food packaging for the dairy industry to prevent biofilm formation and enhance food quality and safety in the future.

11.
Materials (Basel) ; 13(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825117

RESUMEN

Monoacylglycerols (MAGs) have proven of great interest to the foodstuffs industry due to the promising antibacterial activity they show for controlling microbial contamination. Prior to this paper, this antibacterial agent had not been incorporated in a nanofibrous membrane. This study details convenient fabrication of nanofibrous membranes based on polyvinyl butyral (PVB) containing various concentrations of monocaprin (MAG 10) by an electrospinning process. Increasing the concentration of MAG 10 caused differences to appear in the shape of the nanofibers, in addition to which the level of wettability was heightened. Besides exhibiting antibacterial properties, the functional membranes demonstrated especially good antifouling activity. The novel and efficient nanofibrous membranes described have the potential to find eventual application in medical or environmental fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...