Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1361943, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38752196

RESUMEN

Hematopoiesis continues throughout life to produce all types of blood cells from hematopoietic stem cells (HSCs). Metabolic state is a known regulator of HSC self-renewal and differentiation, but whether and how metabolic sensor O-GlcNAcylation, which can be modulated via an inhibition of its cycling enzymes O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT), contributes to hematopoiesis remains largely unknown. Herein, isogenic, single-cell clones of OGA-depleted (OGAi) and OGT-depleted (OGTi) human induced pluripotent stem cells (hiPSCs) were successfully generated from the master hiPSC line MUSIi012-A, which were reprogrammed from CD34+ hematopoietic stem/progenitor cells (HSPCs) containing epigenetic memory. The established OGAi and OGTi hiPSCs exhibiting an increase or decrease in cellular O-GlcNAcylation concomitant with their loss of OGA and OGT, respectively, appeared normal in phenotype and karyotype, and retained pluripotency, although they may favor differentiation toward certain germ lineages. Upon hematopoietic differentiation through mesoderm induction and endothelial-to-hematopoietic transition, we found that OGA inhibition accelerates hiPSC commitment toward HSPCs and that disruption of O-GlcNAc homeostasis affects their commitment toward erythroid lineage. The differentiated HSPCs from all groups were capable of giving rise to all hematopoietic progenitors, thus confirming their functional characteristics. Altogether, the established single-cell clones of OGTi and OGAi hiPSCs represent a valuable platform for further dissecting the roles of O-GlcNAcylation in blood cell development at various stages and lineages of blood cells. The incomplete knockout of OGA and OGT in these hiPSCs makes them susceptible to additional manipulation, i.e., by small molecules, allowing the molecular dynamics studies of O-GlcNAcylation.

2.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430955

RESUMEN

Mantle cell lymphoma (MCL) is an aggressive non-Hodgkin lymphoma with poor prognosis, due to the inevitable development of drug resistance. Despite being the first-in-class proteasome inhibitor for relapsed/refractory MCL, resistance to bortezomib (BTZ) in MCL patients remains a major hurdle of effective therapy, and relapse following BTZ is frequent. Understanding the mechanisms underlying BTZ resistance is, therefore, important for improving the clinical outcome and developing novel therapeutic strategies. Here, we established de novo BTZ-resistant human MCL-derived cells with the highest resistance index of 300-fold compared to parental cells. We provided compelling evidence that both Bcl-xL and Bax are key mediators in determining BTZ sensitivity in MCL cells. Overexpression of antiapoptotic Bcl-xL and depletion of proapoptotic Bax cooperatively protected MCL cells against BTZ-induced apoptosis, causing acquired BTZ resistance, likely by tilting the balance of Bcl-2 family proteins toward antiapoptotic signaling. Bioinformatics analyses suggested that high BCL2L1 (encoded Bcl-xL) and low BAX were, in part, associated with poor prognosis of MCL patients, e.g., when combined with low OGT, which regulates cellular O-GlcNAcylation. Our findings support recent strategies in small molecule drug discovery co-targeting antiapoptotic Bcl-2 family proteins using BH3 mimetics and Bax using Bax activators to overcome cancer drug resistance.


Asunto(s)
Linfoma de Células del Manto , Humanos , Adulto , Bortezomib/farmacología , Bortezomib/uso terapéutico , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
3.
Stem Cells ; 40(12): 1078-1093, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36124999

RESUMEN

Myeloid differentiation blockage at immature and self-renewing stages is a common hallmark across all subtypes of acute myeloid leukemia (AML), despite their genetic heterogeneity. Metabolic state is an important regulator of hematopoietic stem cell (HSC) self-renewal and lineage-specific differentiation as well as several aggressive cancers. However, how O-GlcNAcylation, a nutrient-sensitive posttranslational modification of proteins, contributes to both normal myelopoiesis and AML pathogenesis remains largely unknown. Using small molecule inhibitors and the CRISPR/Cas9 system, we reveal for the first time that inhibition of either OGA or OGT, which subsequently caused an increase or decrease in cellular O-GlcNAcylation, inhibits the self-renewal and maintenance of CD34+ hematopoietic stem/progenitor cells (HSPCs) and leukemic stem/progenitor cells and drives normal and malignant myeloid differentiation. We further unveiled the distinct roles of OGA and OGT inhibition in lineage-specific differentiation. While OGT inhibition induces macrophage differentiation, OGA inhibition promotes the differentiation of both CD34+ HSPCs and AML cells into dendritic cells (DCs), in agreement with an upregulation of a multitude of genes involved in DC development and function and their ability to induce T-cell proliferation, via STAT3/5 signaling. Our novel findings provide significant basic knowledge that could be important in understanding AML pathogenesis and overcoming differentiation blockage-agnostic to the genetic background of AML. Additionally, the parallel findings in normal HSPCs may lay the groundwork for future cellular therapy as a means to improve the ex vivo differentiation of normal DCs and macrophages.


Asunto(s)
Autorrenovación de las Células , Leucemia Mieloide Aguda , Humanos , Antígenos CD34/metabolismo , Diferenciación Celular , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT5
5.
Stem Cell Res Ther ; 13(1): 274, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739577

RESUMEN

BACKGROUND: Human erythropoiesis is a tightly regulated, multistep process encompassing the differentiation of hematopoietic stem cells (HSCs) toward mature erythrocytes. Cellular metabolism is an important regulator of cell fate determination during the differentiation of HSCs. However, how O-GlcNAcylation, a posttranslational modification of proteins that is an ideal metabolic sensor, contributes to the commitment of HSCs to the erythroid lineage and to the terminal erythroid differentiation has not been addressed. METHODS: Cellular O-GlcNAcylation was manipulated using small molecule inhibition or CRISPR/Cas9 manipulation of catalyzing enzyme O-GlcNAc transferase (OGT) and removing enzyme O-GlcNAcase (OGA) in two cell models of erythroid differentiation, starting from: (i) human umbilical cord blood-derived CD34+ hematopoietic stem/progenitor cells (HSPCs) to investigate the erythroid lineage specification and differentiation; and (ii) human-derived erythroblastic leukemia K562 cells to investigate the terminal differentiation. The functional and regulatory roles of O-GlcNAcylation in erythroid differentiation, maturation, and globin production were investigated, and downstream signaling was delineated. RESULTS: First, we observed that two-step inhibition of OGT and OGA, which were established from the observed dynamics of O-GlcNAc level along the course of differentiation, promotes HSPCs toward erythroid differentiation and enucleation, in agreement with an upregulation of a multitude of erythroid-associated genes. Further studies in the efficient K562 model of erythroid differentiation confirmed that OGA inhibition and subsequent hyper-O-GlcNAcylation enhance terminal erythroid differentiation and affect globin production. Mechanistically, we found that BCL11A is a key mediator of O-GlcNAc-driven erythroid differentiation and ß- and α-globin production herein. Additionally, analysis of biochemical contents using synchrotron-based Fourier transform infrared (FTIR) spectroscopy showed unique metabolic fingerprints upon OGA inhibition during erythroid differentiation, supporting that metabolic reprogramming plays a part in this process. CONCLUSIONS: The evidence presented here demonstrated the novel regulatory role of O-GlcNAc/BCL11A axis in erythroid differentiation, maturation, and globin production that could be important in understanding erythropoiesis and hematologic disorders whose etiology is related to impaired erythroid differentiation and hemoglobinopathies. Our findings may lay the groundwork for future clinical applications toward an ex vivo production of functional human reticulocytes for transfusion from renewable cell sources, i.e., HSPCs and pluripotent stem cells.


Asunto(s)
Globinas , Proteínas Represoras , Factores de Transcripción , Diferenciación Celular , Eritropoyesis , Células Madre Hematopoyéticas , Humanos
6.
Sci Rep ; 9(1): 11173, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371804

RESUMEN

Loss-of-function mutations of the SCN5A gene encoding for the sodium channel α-subunit NaV1.5 result in the autosomal dominant hereditary disease Brugada Syndrome (BrS) with a high risk of sudden cardiac death in the adult. We here engineered human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying the CRISPR/Cas9 introduced BrS-mutation p.A735V-NaV1.5 (g.2204C > T in exon 14 of SCN5A) as a novel model independent of patient´s genetic background. Recent studies raised concern regarding the use of hiPSC-CMs for studying adult-onset hereditary diseases due to cells' immature phenotype. To tackle this concern, long-term cultivation of hiPSC-CMs on a stiff matrix (27-42 days) was applied to promote maturation. Patch clamp recordings of A735V mutated hiPSC-CMs revealed a substantially reduced upstroke velocity and sodium current density, a prominent rightward shift of the steady state activation curve and decelerated recovery from inactivation as compared to isogenic hiPSC-CMs controls. These observations were substantiated by a comparative study on mutant A735V-NaV1.5 channels heterologously expressed in HEK293T cells. In contrast to mutated hiPSC-CMs, a leftward shift of sodium channel inactivation was not observed in HEK293T, emphasizing the importance of investigating mechanisms of BrS in independent systems. Overall, our approach supports hiPSC-CMs' relevance for investigating channelopathies in a dish.


Asunto(s)
Síndrome de Brugada/genética , Células Madre Pluripotentes Inducidas/citología , Mutación , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Síndrome de Brugada/patología , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Técnicas de Placa-Clamp
7.
Cancers (Basel) ; 11(4)2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022903

RESUMEN

Despite overall progress in improving cancer treatments, the complete response of mantle cell lymphoma (MCL) is still limited due to the inevitable development of drug resistance. More than half of patients did not attain response to bortezomib (BTZ), the approved treatment for relapsed or refractory MCL. Understanding how MCL cells acquire BTZ resistance at the molecular level may be a key to the long-term management of MCL patients and new therapeutic strategies. We established a series of de novo BTZ-resistant human MCL-derived cells with approximately 15- to 60-fold less sensitivity than those of parental cells. Using gene expression profiling, we discovered that putative cancer-related genes involved in drug resistance and cell survival tested were mostly downregulated, likely due to global DNA hypermethylation. Significant information on dysregulated lipid metabolism was obtained from synchrotron-based Fourier transform infrared (FTIR) spectroscopy of single cells. We demonstrated for the first time an upregulation of CD36 in highly BTZ-resistant cells in accordance with an increase in their lipid accumulation. Ectopic expression of CD36 causes an increase in lipid droplets and renders BTZ resistance to various human MCL cells. By contrast, inhibition of CD36 by neutralizing antibody strongly enhances BTZ sensitivity, particularly in CD36-overexpressing cells and de novo BTZ-resistant cells. Together, our findings highlight the potential application of CD36 inhibition for BTZ sensitization and suggest the use of FTIR spectroscopy as a promising technique in cancer research.

8.
Stem Cell Res Ther ; 9(1): 46, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29482624

RESUMEN

BACKGROUND: Thalassemia is the most common genetic disease worldwide; those with severe disease require lifelong blood transfusion and iron chelation therapy. The definitive cure for thalassemia is allogeneic hematopoietic stem cell transplantation, which is limited due to lack of HLA-matched donors and the risk of post-transplant complications. Induced pluripotent stem cell (iPSC) technology offers prospects for autologous cell-based therapy which could avoid the immunological problems. We now report genetic correction of the beta hemoglobin (HBB) gene in iPSCs derived from a patient with a double heterozygote for hemoglobin E and ß-thalassemia (HbE/ß-thalassemia), the most common thalassemia syndrome in Thailand and Southeast Asia. METHODS: We used the CRISPR/Cas9 system to target the hemoglobin E mutation from one allele of the HBB gene by homology-directed repair with a single-stranded DNA oligonucleotide template. DNA sequences of the corrected iPSCs were validated by Sanger sequencing. The corrected clones were differentiated into hematopoietic progenitor and erythroid cells to confirm their multilineage differentiation potential and hemoglobin expression. RESULTS: The hemoglobin E mutation of HbE/ß-thalassemia iPSCs was seamlessly corrected by the CRISPR/Cas9 system. The corrected clones were differentiated into hematopoietic progenitor cells under feeder-free and OP9 coculture systems. These progenitor cells were further expanded in erythroid liquid culture system and developed into erythroid cells that expressed mature HBB gene and HBB protein. CONCLUSIONS: Our study provides a strategy to correct hemoglobin E mutation in one step and these corrected iPSCs can be differentiated into hematopoietic stem cells to be used for autologous transplantation in patients with HbE/ß-thalassemia in the future.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Hemoglobina E , Células Madre Pluripotentes Inducidas/metabolismo , Talasemia beta , Autoinjertos , Femenino , Hemoglobina E/genética , Hemoglobina E/metabolismo , Humanos , Masculino , Mutación , Trasplante de Células Madre , Talasemia beta/genética , Talasemia beta/metabolismo , Talasemia beta/terapia
9.
Mol Cancer Ther ; 17(2): 484-496, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29167312

RESUMEN

Aberrant energy metabolism represents a hallmark of cancer and contributes to numerous aggressive behaviors of cancer cells, including cell death and survival. Despite the poor prognosis of mantle cell lymphoma (MCL), due to the inevitable development of drug resistance, metabolic reprograming of MCL cells remains an unexplored area. Posttranslational modification of proteins via O-GlcNAcylation is an ideal sensor for nutritional changes mediated by O-GlcNAc transferase (OGT) and is removed by O-GlcNAcase (OGA). Using various small-molecule inhibitors of OGT and OGA, we found for the first time that O-GlcNAcylation potentiates MCL response to bortezomib. CRISPR interference of MGEA5 (encoding OGA) validated the apoptosis sensitization by O-GlcNAcylation and OGA inhibition. To identify the potential clinical candidates, we tested MCL response to drug-like OGA inhibitor, ketoconazole, and verified that it exerts similar sensitizing effect on bortezomib-induced apoptosis. Investigations into the underlying molecular mechanisms reveal that bortezomib and ketoconazole act in concert to cause the accumulation of truncated Bid (tBid). Not only does ketoconazole potentiate tBid induction, but also increases tBid stability through O-GlcNAcylation that interferes with tBid ubiquitination and proteasomal degradation. Remarkably, ketoconazole strongly enhances bortezomib-induced apoptosis in de novo bortezomib-resistant MCL cells and in patient-derived primary cells with minimal cytotoxic effect on normal peripheral blood mononuclear cells and hepatocytes, suggesting its potential utility as a safe and effective adjuvant for MCL. Together, our findings provide novel evidence that combination of bortezomib and ketoconazole or other OGA inhibitors may present a promising strategy for the treatment of drug-resistant MCL. Mol Cancer Ther; 17(2); 484-96. ©2017 AACR.


Asunto(s)
Bortezomib/uso terapéutico , Linfoma de Células del Manto/tratamiento farmacológico , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Apoptosis , Bortezomib/farmacología , Humanos , Linfoma de Células del Manto/patología , Procesamiento Proteico-Postraduccional , Transducción de Señal
10.
Asian Pac J Cancer Prev ; 13 Suppl: 107-14, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23480771

RESUMEN

Cholangiocarcinoma (CCA) is a malignancy of bile ducts with a high incidence of invasion and metastasis. This disease is often detected in advanced stages because of the difficulties of early diagnosis, leading to a high mortality rate. However, biomarkers for early CCA detection are still lacking. In this study, to identify potential biomarker proteins, differential secretome analysis by the GeLC-MS/MS approach was applied with four CCA cell lines and a control immortalized cholangiocyte cell line. Among 78 up-regulated proteins, 53 including ICAM- 1 were exclusively expressed in four CCA secretomes but not in MMNK1. Based on this result, we measured ICAM-1 levels in serum samples of CCA patients and healthy controls and found significantly higher values in CCA patients' sera. Receiver operating characteristic curve analysis suggested that serum ICAM-1 level could be a discriminatory diagnostic marker for CCA and healthy controls (area under curve=0.829) with a sensitivity of 77% and a specificity of 70% at a cut off value of 167 ng/ml. Moreover, the serum ICAM-1 showed positive correlations with alkaline phosphatase and carcinoembryonic antigen levels. Comparison of ICAM-1 levels of paired pre- and post-operative sera of 12 cases revealed significant decrease after tumor resection. However, serum ICAM-1 levels were not significantly different between CCA and benign biliary diseases with mainly inflammatory features.


Asunto(s)
Neoplasias de los Conductos Biliares , Conductos Biliares Intrahepáticos , Biomarcadores de Tumor/metabolismo , Colangiocarcinoma , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA