Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 163: 107087, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37321098

RESUMEN

Infectious Bursal Disease (IBD) is a common and contagious viral infection that significantly affects the poultry industry. This severely suppresses the immune system in chickens, thereby threating their health and well-being. Vaccination is the most effective strategy for preventing and controlling this infectious agent. The development of VP2-based DNA vaccines combined with biological adjuvants has recently received considerable attention due to their effectiveness in eliciting both humoral and cellular immune responses. In this study, we applied bioinformatics tools to design a fused bioadjuvant candidate vaccine from the full-length sequence of the VP2 protein of IBDV isolated in Iran using the antigenic epitope of chicken IL-2 (chiIL-2). Furthermore, to improve the antigenic epitope presentation and to maintain the three-dimensional structure of the chimeric gene construct, the P2A linker (L) was used to fuse the two fragments. Our in-silico analysis for the design of a candidate vaccine indicates that a continuous sequence of amino acid residues ranging from 105 to 129 in chiIL-2 is proposed as a B cell epitope by epitope prediction servers. The final 3D structure of the VP2-L-chiIL-2105-129 was subjected to physicochemical property determination, molecular dynamic simulation, and antigenic site determination. The results of these analyses led to the development of a stable candidate vaccine that is non-allergenic and has the potential for antigenic surface display potential and adjuvant activity. Finally, it is necessary to investigate the immune response induced by our proposed vaccine in avian hosts. Notably, increasing the immunogenicity of DNA vaccines can be achieved by combining antigenic proteins with molecular adjuvants using the principle of rational vaccine design.


Asunto(s)
Virus de la Enfermedad Infecciosa de la Bolsa , Vacunas de ADN , Animales , Interleucina-2/genética , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Pollos , Vacunas de ADN/genética , Epítopos , Anticuerpos Antivirales , Adyuvantes Inmunológicos/genética
2.
Int J Biol Macromol ; 114: 656-665, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29559314

RESUMEN

The search for ionic liquids (ILs) with biochemical and biomedical applications has recently gained great attention. IL containing solvents can change the structure, stability and function of proteins. The study of protein conformation in ILs is important to understand enzymatic activity. In this work, conformational stability and activity of the enzyme in two imidazolium-based ILs (1-butyl 3-methyl-imidozolium and 1-hexyl 3-methyl-imidozoliumbromides) were investigated. We treated glucose oxidase as dimer-active enzyme in different IL concentration and seen that GOx activity was inhibited in the presence of ILs. Our experimental data showed that inhibition of activity and reduction of enzyme tertiary structure are more for hexyl than butyl derivative. These experimental results are in agreement with foregoing observations. To find a possible mechanism, a series of molecular dynamics simulation of the enzyme were performed at different IL concentration. The structure parameters obtained from MD simulation showed that conformational changes at the active site and FAD-binding site support the hypothesis of enzyme inhibition at the presence of ILs. Root mean square deviation and fluctuation calculations indicated that the enzyme has stable conformation at higher IL concentration, in agreement with experimental observation. But hexyl derivative has a much stronger stabilization effect on the protein structure. In summary, the present study could improve our understanding of the molecular mechanism about the ionic liquid effects on the structure and activity of proteins.


Asunto(s)
Glucosa Oxidasa/química , Imidazoles/química , Líquidos Iónicos/química , Simulación de Dinámica Molecular , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
3.
Int J Biol Macromol ; 106: 284-292, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28782614

RESUMEN

Salts exist in any cell and living organism in contact with biological macromolecules. How these salts affect biomolecules such as enzyme is important from both basic sciences and practical technologies. It was observed that divalent salts can change structure and function of protein at higher concentrations. Here, we investigated the effect of divalent salt on the behavior of a multimeric enzyme. We treated glucose oxidase as dimer-active enzyme in different CaCl2 concentration and seen that the enzyme become inactive at high concentration of salt. These experimental results are in agreement with recently published researches. To find a possible mechanism, a series of molecular dynamics simulation of the enzyme were performed at different salt concentration. According to the MD simulation, the conformational changes at the active site and FAD-binding site support the hypothesis of enzyme inactivation at high CaCl2 concentration. MD simulations also showed that enzyme has an unstable conformation at higher salt concentration which is in agreement with our experimental data. Detailed structural properties of the enzyme have been analyzed under different conditions. To the best of our knowledge, this is the first study that bears detailed structural mechanism about the salt effects on multimeric macromolecules.


Asunto(s)
Cloruro de Calcio/química , Flavina-Adenina Dinucleótido/química , Glucosa Oxidasa/química , Simulación de Dinámica Molecular , Aspergillus niger/química , Aspergillus niger/enzimología , Dominio Catalítico , Estabilidad de Enzimas , Glucosa Oxidasa/aislamiento & purificación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...