Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 349: 109641, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34534549

RESUMEN

Breast cancer (BC) is the most frequently diagnosed female cancer and second leading cause of death. Despite the discovery of many antineoplastic drugs for BC, the current therapy is not totally efficient. In this study, we investigated the potential of repurposing the well-known diabetes type II drug liraglutide to modulate epigenetic modifications in BC cells lines in vitro and in vivo via Ehrlich mice tumors models. The in vitro results revealed a significant reduction on cell viability, migration, DNMT activity and displayed lower levels of global DNA methylation in BC cell lines after liraglutide treatment. The interaction between liraglutide and the DNMT enzymes resulted in a decrease profile of DNA methylation for the CDH1, ESR1 and ADAM33 gene promoter regions and, consequently, increased their gene and protein expression levels. To elucidate the possible interaction between liraglutide and the DNMT1 protein, we performed an in silico study that indicates liraglutide binding in the catalytic cleft via hydrogen bonds and salt bridges with the interdomain contacts and disturbs the overall enzyme conformation. The in vivo study was also able to reveal that liraglutide and the combined treatment of liraglutide and paclitaxel or methotrexate were effective in reducing tumor growth. Moreover, the modulation of CDH1 and ADAM33 mouse gene expression by DNA demethylation suggests a role for liraglutide in DNMT activity in vivo. Altogether, these results indicate that liraglutide may be further analysed as a new adjuvant treatment for BC.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Inhibidores Enzimáticos/uso terapéutico , Liraglutida/uso terapéutico , Proteínas ADAM/genética , Animales , Antígenos CD/genética , Neoplasias de la Mama/patología , Cadherinas/genética , Línea Celular Tumoral , Metilación de ADN/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Ratones , Regiones Promotoras Genéticas
2.
NPJ Breast Cancer ; 5: 11, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30963110

RESUMEN

The risk of developing metastatic disease in breast cancer patients is traditionally predictable based on the number of positive axillary lymph nodes, complemented with additional clinicopathological factors. However, since lymph node-negative patients have a 20-30% probability of developing metastatic disease, lymph node information alone is insufficient to accurately assess individual risk. Molecular approaches, such as multigene expression panels, analyze a set of cancer-related genes that more accurately predict the early risk of metastasis and the treatment response. Here, we present N-Myc downstream-regulated gene 4 (NDRG4) epigenetic silencing as a mechanistic biomarker of metastasis in ductal invasive breast tumors. While aberrant NDRG4 DNA hypermethylation is significantly associated with the development of metastatic disease, downregulation of NDRG4 transcription and protein expression is functionally associated with enhanced lymph node adhesion and cell mobility. Here, we show that epigenetic silencing of NDRG4 modulates integrin signaling by assembling ß1-integrins into large punctate clusters at the leading edge of tumor cells to promote an "adhesive switch," decreasing cell adhesion to fibronectin and increasing cell adhesion and migration towards vitronectin, an important component of human lymph nodes. Taken together, our functional and clinical observations suggest that NDRG4 is a potential mechanistic biomarker in breast cancer that is functionally associated with metastatic disease.

3.
Eur J Pharm Sci ; 84: 116-22, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26802551

RESUMEN

Treated glioblastoma multiforme (GBM) patients only survive 6 to 14months after diagnosis; therefore, the development of novel therapeutic strategies to treat gliomas remains critically necessary. Considering that phenolic compounds, like quercetin, have the potential to be used in the chemotreatment of gliomas and that some flavonoids exhibit the ability to cross the BBB, in the present study, we investigated the antitumor effect of flavonoids (including chalcones, flavones, flavanones and flavonols). Initially their activities were tested in C6 glioma cells screened using the MTT method, resulting in the selection of chalcone 2 whose feasibility was confirmed by a Trypan Blue exclusion assay in the low µM range on C6 glioma cells. Cell cycle and apoptotic death analyses on C6 glioma cells were also performed, and chalcone 2 increased the apoptosis of the cells but did not alter the cell cycle progression. In addition, treatments with these two compounds were not cytotoxic to hippocampal organotypic cultures, a model of healthy neural cells. Furthermore, the results indicated that 2 induced apoptosis by inhibition of NF-κB and activation of active caspase-3 in glioma cells, suggesting that it is a potential prototype to develop new treatments for GBM in the future.


Asunto(s)
Antineoplásicos/farmacología , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , FN-kappa B/metabolismo , Quercetina/análogos & derivados , Quercetina/farmacología , Animales , Apoptosis/efectos de los fármacos , Transporte Biológico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Ratas , Ratas Wistar
4.
Eur J Med Chem ; 95: 552-62, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25863023

RESUMEN

We described the first synthesis of fatty acid 3,4-dihydropyrimidinones (DHPM-fatty acids) using the Biginelli multicomponent reaction. Antiproliferative activity on two glioma cell lines (C6 rat and U-138-MG human) was also reported. The novel DHPM-fatty acids reduced glioma cell viability relative to temozolomide. Hybrid oxo-monastrol-palmitic acid was the most potent, reducing U-138-MG human cell viability by ca. 50% at 10 µM. In addition, the DHPM-fatty acids showed a large safety range to neural cells, represented by the organotypic hippocampal culture. These results suggest that the increased lipophilicity of DHPM-fatty acids offer a promising approach to overcoming resistance to chemotherapy and may play an important role in the development of new antitumor drugs.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Ácidos Grasos/síntesis química , Ácidos Grasos/farmacología , Glioma/patología , Uridina/análogos & derivados , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Diseño de Fármacos , Ácidos Grasos/química , Humanos , Masculino , Ratas , Ratas Wistar , Uridina/química
5.
J Biomed Nanotechnol ; 9(3): 516-26, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23621009

RESUMEN

The development of novel therapeutic strategies to treat gliomas remains critical as a result of the poor prognoses, inef-. ficient therapies and recurrence associated with these tumors. In this context, biodegradable nanoparticles are emerging as efficient drug delivery systems for the treatment of difficult-to-treat diseases such as brain tumors. In the current study, we evaluated the antiglioma effect of trans-resveratrol-loaded lipid-core nanocapsules (RSV-LNC) based on in vitro (C6 glioma cell line) and in vivo (brain-implanted C6 cells) models of the disease. In vitro, RSV-LNC decreased the viability of C6 glioma cells to a higher extent than resveratrol in solution. Interestingly, RSV-LNC treatment was not cytotoxic to hippocampal organotypic cultures, a model of healthy neural cells, suggesting selectivity for cancer cells. RSV-LNC induced losses in glioma cell viability through induction of apoptotic cell death, as assessed by Annexin-FITC/PI assay, which was preceded by an early arrest in the S and G1 phases of the cell cycle. In brain-implanted C6 tumors, treatment with RSV-LNC (5 mg/kg/day, i.p.) for 10 days promoted a marked decrease in tumor size and also reduced the incidence of some malignant tumor-associated characteristics, such as intratumoral hemorrhaging, intratumoral edema and pseudopalisading, compared to resveratrol in solution. Taken together, the results presented herein suggest that nanoencapsulation of resveratrol improves its antiglioma activity, thus providing a provocative foundation for testing the clinical usefulness of nanoformulations of this natural compound as a new chemotherapeutic strategy for the treatment of gliomas.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioma/tratamiento farmacológico , Glioma/patología , Lípidos/química , Nanocápsulas/química , Estilbenos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fenómenos Químicos , Química Farmacéutica , Modelos Animales de Enfermedad , Fase G1/efectos de los fármacos , Hipocampo/efectos de los fármacos , Humanos , Masculino , Trasplante de Neoplasias , Ratas , Ratas Wistar , Resveratrol , Fase S/efectos de los fármacos , Soluciones , Estilbenos/farmacología , Carga Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...