Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag Res ; : 734242X241251417, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773885

RESUMEN

Printed circuit boards (PCBs) are the most complex and valuable component of electronic devices, but only 34% of them are recycled in an environmentally sound manner. Improving the recycling rate and efficiency requires a fast, reliable and uncostly analytical method. Although the X-ray fluorescence (XRF) shows high potential, it is often unreliable. In this study, we propose a novel XRF methodology for the elemental analysis of PCBs, using the certified reference material (CRM) to decrease uncertainty and enhance accuracy. The results show significant improvement in robustness and accuracy of portable XRF(pXRF) analyses for elements Cu, Pb, Ni, As and Au, with a relative average inaccuracy of approximately 5% compared to referenced values. The methodology validation carried out by comparing pXRF and inductively coupled plasma mass spectroscopy analyses of personal computer motherboard samples shows no statistically significant difference for elements Cu, Cr and Ag. The study shows that the calibration of pXRF by CRMs enables the necessary analysis of PCBs in an efficient and reliable manner and could be also be applied to different types of PCBs and other electronic components, batteries or contaminated soil samples.

2.
Polymers (Basel) ; 14(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956603

RESUMEN

Plastics are a ubiquitous material with good mechanical, chemical and thermal properties, and are used in all industrial sectors. Large quantities, widespread use, and insufficient management of plastic wastes lead to low recycling rates. The key challenge in recycling plastic waste is achieving a higher degree of homogeneity between the different polymer material streams. Modern waste sorting plants use automated sensor-based sorting systems capable to sort out commodity plastics, while many engineering plastics, such as polyoxymethylene (POM), will end up in mixed waste streams and are therefore not recycled. A novel approach to increasing recycling rates is tracer-based sorting (TBS), which uses a traceable plastic additive or marker that enables or enhances polymer type identification based on the tracer's unique fingerprint (e.g., fluorescence). With future TBS applications in mind, we have summarized the literature and assessed TBS techniques and spectroscopic detection methods. Furthermore, a comprehensive list of potential tracer substances suitable for thermoplastics was derived from the literature. We also derived a set of criteria to select the most promising tracer candidates (3 out of 80) based on their material properties, toxicity profiles, and detectability that could be applied to enable the circularity of, for example, POM or other thermoplastics.

3.
Waste Manag ; 144: 182-190, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35378357

RESUMEN

The biological leaching of metals from different waste streams by bacteria is intensively investigated to address metal recycling and circular economy goals. However, usually external addition of sulfuric acid is required to maintain the low pH optimum of the bacteria to ensure efficient leaching. Extremely acidophilic Acidithiobacillus spp. producing sulfuric acid and ferric iron have been investigated for several decades in the bioleaching of metal-containing ores. Their application has now been extended to the extraction of metals from artificial ores and other secondary sources. In this study, an optimized process for producing biogenic sulfuric acid from elemental sulfur by two sulfur-oxidizing species, A. thiooxidans and A. caldus and their combinations, was investigated in batch and stirred tank experiments. Using a combined culture of both species, 1.05 M and 1.4 M biogenic sulfuric acid was produced at 30 °C and 6% elemental sulfur in batch and semi continuous modes, respectively. The acid produced was then used to control the pH in a heap bioleaching system in which iron- and sulfur-oxidizing A. ferrooxidans was applied to biologically leach metals from waste incineration residuals. Metals like Cu, Ni, Al, Mn, and Zn were successfully recovered by 99, 93, 84, 77 and 68%, respectively within three weeks of heap bioleaching. Overall, a potential value recovery of incorporated metals >70% could be achieved. This highlights the potential and novelty of applying extremely acidophilic sulfur-oxidizing bacteria for cheap and efficient production of biogenic sulfuric acid and its use in pH control.


Asunto(s)
Acidithiobacillus , Incineración , Bacterias , Hierro , Metales , Azufre , Ácidos Sulfúricos
4.
Waste Manag ; 138: 125-139, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34875455

RESUMEN

Lithium-ion batteries (LIBs) show high energy densities and are therefore used in a wide range of applications: from portable electronics to stationary energy storage systems and traction batteries used for e-mobility. Considering the projected increase in global demand for this energy storage technology, driven primarily by growth in e-vehicles, and looking at the criticality of some raw materials used in LIBs, the need for an efficient recycling strategy emerges. In this study, current state-of-the-art technologies for LIB recycling are reviewed and future opportunities and challenges, in particular to recover critical raw materials such as lithium or cobalt, are derived. Special attention is paid to the interrelationships between mechanical or thermal pre-treatment and hydro- or pyrometallurgical post-treatment processes. Thus, the unique approach of the article is to link processes beyond individual stages within the recycling chain. It was shown that influencing the physicochemical properties of intermediate products can lead to reduced recycling rates or even the exclusion of certain process options at the end of the recycling chain. More efforts are needed to improve information and data sharing on the exact composition of feedstock for recycling as well as on the processing history of intermediates to enable closed loop LIB recycling. The technical understanding of the interrelationships between different process combinations, such as pyrolytic or mechanical pre-treatment for LIB deactivation and metal separation, respectively, followed by hydrometallurgical treatment, is of crucial importance to increase recovery rates of cathodic metals such as cobalt, nickel, and lithium, but also of other battery components.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Iones , Metales , Reciclaje
5.
Artículo en Inglés | MEDLINE | ID: mdl-33921067

RESUMEN

Waste plastic today is a global threat. The rapid increase in global production and use has led to increasing quantities of plastics in industrial and municipal waste streams. While in industrialized countries plastic waste is taken up by a waste management system and at least partly recycled, in low-income countries adequate infrastructure to collect and treat waste adequately is often not in place. This paper analyzes how plastic waste is handled in Vietnam, a country with a fast-growing industry and growing consumption. The recycling of plastic waste typically takes place in an informal context. To demonstrate this in more detail, two rural settlements-so-called craft villages-are taken as case studies. Technologies and processes for plastic recycling are described and related risks for human health and the environment are shown, as well as the potential for the improvement of this situation.


Asunto(s)
Plásticos , Administración de Residuos , Humanos , Reciclaje , Vietnam
6.
Artículo en Inglés | MEDLINE | ID: mdl-31067685

RESUMEN

In the last few decades, the rapid technological evolution has led to a growing generation of waste electrical and electronic equipment (WEEE). Not rarely, it has been exported from industrialized to developing countries, where it represents a secondary source of valuable materials such as gold, copper, and silver. The recycling of WEEE is often carried out without any environmental and health protection. This paper reviews recent literature dealing with the informal treatment of WEEE in developing regions, gathering and analyzing data on concentration of both inorganic and organic pollutants in the environment. Open burning practices are revealed as most polluting 'technology', followed by mechanical treatment and leaching. Significant levels of pollutants have been detected in human bodies, both children and adults, working in or living in areas with informal WEEE treatment.


Asunto(s)
Países en Desarrollo , Residuos Electrónicos , Contaminación Ambiental/análisis , Administración de Residuos/métodos , Humanos
7.
Environ Sci Pollut Res Int ; 26(11): 11042-11052, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30793245

RESUMEN

Waste electric and electronic equipment (WEEE) represents a potential secondary source of valuable materials, whose recovery is a growing business activity worldwide. In low-income countries, recycling is carried out under poorly controlled conditions resulting in severe environmental pollution. High concentrations of both metallic and organic pollutants have been confirmed in air, soil, water, and sediments in countries with informal recycling areas. The release of these contaminants into the environment presents a risk to the health of the exposed population that has been widely acknowledged but still needs to be quantified. The aim of this work was to evaluate the relative risk from inhalation associated with the open burning of different kinds of WEEE. The shrinking core model was applied to estimate the concentration of the metals which would be released into the environment during the incineration of different types of WEEE. In addition, the potential generation of dioxins during the same informal practice was estimated, based on the plastic content of the WEEE. The results provided for the first time a comparative analysis of the risk posed from the open burning of WEEE components, proposing a methodology to address the absolute risk assessment to workers from the informal recycling of WEEE.


Asunto(s)
Contaminantes Atmosféricos/análisis , Residuos Electrónicos/análisis , Incineración/métodos , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Reciclaje/métodos , Dioxinas/análisis , Humanos , Metales/análisis , Plásticos/análisis , Medición de Riesgo
8.
Environ Sci Pollut Res Int ; 25(1): 683-692, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29058259

RESUMEN

In developing countries, the recovery of valuable materials from Waste Electrical and Electronic Equipment (WEEE) is carried out via uncontrolled practices, posing potentially severe risks both to human health and the environment. The assessment of the risk, which depends on both the kind and hazardous properties of the substances contained in WEEE, is currently limited as the exposure scenario for the single informal practice cannot be fully characterized for this purpose. In this context, this work proposes and evaluates a strategy to identify the relative potential harm of different kinds of WEEE by their content in metals, selected as the target substances of concern. This was based on the individual metal content, primarily located in the printed circuit boards (PCBs) of the different devices. The metal composition of the individual PCBs was identified and the dominant unregulated metal recovery practices were reviewed to identify the most suitable parameter to express the toxicity of these metals. Based on a mass-normalized cumulative toxicity, via the inhalation route, individual components were assessed from compositional variation found in the literature. The results is a semiquantitative ranking of individual components, revealing significant differences in potential harm posed by different electronic appliances and an opportunity to provide prioritization strategies in future management.


Asunto(s)
Contaminantes Atmosféricos/análisis , Residuos Electrónicos/análisis , Sustancias Peligrosas/análisis , Reciclaje/métodos , Retardadores de Llama/análisis , Humanos , Metales Pesados/análisis , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...