Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727716

RESUMEN

PHOX2B is a transcription factor essential for the development of different classes of neurons in the central and peripheral nervous system. Heterozygous mutations in the PHOX2B coding region are responsible for the occurrence of Congenital Central Hypoventilation Syndrome (CCHS), a rare neurological disorder characterised by inadequate chemosensitivity and life-threatening sleep-related hypoventilation. Animal studies suggest that chemoreflex defects are caused in part by the improper development or function of PHOX2B expressing neurons in the retrotrapezoid nucleus (RTN), a central hub for CO2 chemosensitivity. Although the function of PHOX2B in rodents during development is well established, its role in the adult respiratory network remains unknown. In this study, we investigated whether reduction in PHOX2B expression in chemosensitive neuromedin-B (NMB) expressing neurons in the RTN altered respiratory function. Four weeks following local RTN injection of a lentiviral vector expressing the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of PHOX2B expression was observed in Nmb neurons compared to both naive rats and rats injected with the non-target shRNA. PHOX2B knockdown did not affect breathing in room air or under hypoxia, but ventilation was significantly impaired during hypercapnia. PHOX2B knockdown did not alter Nmb expression but it was associated with reduced expression of both Task2 and Gpr4, two CO2/pH sensors in the RTN. We conclude that PHOX2B in the adult brain has an important role in CO2 chemoreception and reduced PHOX2B expression in CCHS beyond the developmental period may contribute to the impaired central chemoreflex function.


Asunto(s)
Dióxido de Carbono , Proteínas de Homeodominio , Factores de Transcripción , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Dióxido de Carbono/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ratas , Técnicas de Silenciamiento del Gen , Masculino , Hipoventilación/genética , Hipoventilación/congénito , Hipoventilación/metabolismo , Células Quimiorreceptoras/metabolismo , Ratas Sprague-Dawley , Apnea Central del Sueño/genética , Apnea Central del Sueño/metabolismo , Neuronas/metabolismo , Neuronas/fisiología
2.
Acta Physiol (Oxf) ; 240(4): e14093, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38258900

RESUMEN

AIM: The central CO2 chemoreflex is a vital component of respiratory control networks, providing excitatory drive during resting conditions and challenges to blood gas homeostasis. The retrotrapezoid nucleus is a crucial hub for CO2 chemosensitivity; its ablation or inhibition attenuates CO2 chemoreflexes and diminishes restful breathing. Similar phenotypes characterize certain hypoventilation syndromes, suggesting underlying retrotrapezoid nucleus impairment in these disorders. Progesterone stimulates restful breathing and CO2 chemoreflexes. However, its mechanisms and sites of actions remain unknown and the experimental use of synthetic progestins in patients and animal models have been met with mixed respiratory outcomes. METHODS: We investigated whether acute or chronic administration of the progestinic drug, etonogestrel, could rescue respiratory chemoreflexes following selective lesion of the retrotrapezoid nucleus with saporin toxin. Adult female Sprague Dawley rats were grouped based on lesion size determined by the number of surviving chemosensitive neurons, and ventilatory responses were measured by whole body plethysmography. RESULTS: Ventilatory responses to hypercapnia (but not hypoxia) were compromised in a lesion-dependent manner. Chronic etonogestrel treatment improved CO2 chemosensitivity selectively in rats with moderate lesion, suggesting that a residual number of chemosensitive neurons are required for etonogestrel-induced CO2 chemoreflex recovery. CONCLUSION: This study provides new evidence for the use of progestins as respiratory stimulants under conditions of central hypoventilation and provides a new testable model for assessing the mechanism of action of progestins in the respiratory network.


Asunto(s)
Dióxido de Carbono , Desogestrel , Progestinas , Humanos , Ratas , Animales , Femenino , Ratas Sprague-Dawley , Hipoventilación , Hipercapnia , Células Quimiorreceptoras
3.
Artículo en Inglés | MEDLINE | ID: mdl-37088410

RESUMEN

Tadpole development is influenced by environmental cues and hypoxia can favor the emergence of the neural networks driving air breathing. Exposing isolated brainstems from pre-metamorphic tadpoles to acute hypoxia (∼0% O2; 15 min) leads to a progressive increase in fictive air breaths (∼3 fold) in the hours that follow stimulation. Here, we first determined whether this effect persists over longer periods (<18 h); we then evaluated maturity of the motor output by comparing the breathing pattern of hypoxia-exposed brainstems to that of preparations from adult bullfrogs under basal conditions. Because progressive withdrawal of GABAB-mediated inhibition contributes to the developmental increase in fictive lung ventilation, we then hypothesised that hypoxia reduces respiratory sensitivity to baclofen (selective GABAB-agonist). Experiments were performed on isolated brainstem preparations from pre-metamorphic tadpoles (TK stages IV to XIV); respiratory-related neural activity was recorded from cranial nerves V/VII and X before and 18 h after exposure to hypoxia (0% O2 + 2% CO2; 25 min). Time-control experiments (no hypoxia) were performed. Exposing pre-metamorphic tadpoles to hypoxia did not affect gill burst frequency, but augmented the frequency of fictive lung bursts and the incidence of episodic breathing levels intermediate between pre-metamorphic and adult preparations. Addition of baclofen to the aCSF (0,2 µM - 20 min) reduced lung burst frequency, but the response of hypoxia-exposed brainstems was greater than controls. We conclude that acute hypoxia facilitates development and maturation of the motor command driving air breathing. We propose that a greater number of active rhythmogenic neurons expressing GABAb receptors contributes to this effect.


Asunto(s)
Baclofeno , Respiración , Animales , Baclofeno/farmacología , Larva/fisiología , Pulmón/fisiología , Branquias/fisiología , Hipoxia , Rana catesbeiana
5.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563209

RESUMEN

Heterozygous mutations of the transcription factor PHOX2B are responsible for Congenital Central Hypoventilation Syndrome, a neurological disorder characterized by inadequate respiratory response to hypercapnia and life-threatening hypoventilation during sleep. Although no cure is currently available, it was suggested that a potent progestin drug provides partial recovery of chemoreflex response. Previous in vitro data show a direct molecular link between progestins and PHOX2B expression. However, the mechanism through which these drugs ameliorate breathing in vivo remains unknown. Here, we investigated the effects of chronic administration of the potent progestin drug Etonogestrel (ETO) on respiratory function and transcriptional activity in adult female rats. We assessed respiratory function with whole-body plethysmography and measured genomic changes in brain regions important for respiratory control. Our results show that ETO reduced metabolic activity, leading to an enhanced chemoreflex response and concurrent increased breathing cycle variability at rest. Furthermore, ETO-treated brains showed reduced mRNA and protein expression of PHOX2B and its target genes selectively in the dorsal vagal complex, while other areas were unaffected. Histological analysis suggests that changes occurred in the solitary tract nucleus (NTS). Thus, we propose that the NTS, rich in both progesterone receptors and PHOX2B, is a good candidate for ETO-induced respiratory modulation.


Asunto(s)
Apnea Central del Sueño , Núcleo Solitario , Animales , Desogestrel , Femenino , Proteínas de Homeodominio/metabolismo , Hipoventilación/congénito , Hipoventilación/genética , Mutación , Progestinas/farmacología , Ratas , Apnea Central del Sueño/genética , Núcleo Solitario/metabolismo
6.
J Sleep Res ; 31(4): e13539, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34921704

RESUMEN

Sleep irregularities and respiratory events (apnea, O2 desaturation or a combination thereof) are often present in the infant population. While inspiration is the main active process in the act of breathing, expiration is generally thought to occur passively. Although commonly considered as quiet during sleep, expiratory abdominal muscles have been proposed to be recruited to promote ventilation, facilitate gas exchange, and reduce the work of breathing during conditions of increased respiratory drive, exercise, or airway obstruction. In this study, we investigated the occurrence of expiratory abdominal muscle activity in polysomnographic studies of subjects (aged 0-2 years) suspected of sleep disordered breathing. Our results indicate that abdominal muscle activation occurs during sleep, most frequently during non-rapid eye movement and rapid-eye movement states compared to slow-wave sleep. Furthermore, abdominal muscle activity was present during regular breathing or associated with respiratory events (apneas or O2 desaturation). In the latter case, abdominal muscle recruitment more frequently followed the onset of respiratory events and terminated with recovery from blood O2 desaturation events. We conclude that expiratory abdominal muscle activity contributes to the pattern of respiratory muscle recruitment during sleep in infants and given its temporal relationship with respiratory events, we propose that its recruitment could facilitate proper ventilation by counteracting airway resistance and O2 desaturation in infancy across different stages of sleep.


Asunto(s)
Síndromes de la Apnea del Sueño , Sueño , Niño , Espiración/fisiología , Humanos , Lactante , Polisomnografía/métodos , Sueño/fisiología , Síndromes de la Apnea del Sueño/complicaciones , Sueño REM/fisiología
7.
J Exp Biol ; 224(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33914034

RESUMEN

In pre-metamorphic tadpoles, the neural network generating lung ventilation is present but actively inhibited; the mechanisms leading to the onset of air breathing are not well understood. Orexin (ORX) is a hypothalamic neuropeptide that regulates several homeostatic functions, including breathing. While ORX has limited effects on breathing at rest, it potentiates reflexive responses to respiratory stimuli mainly via ORX receptor 1 (OX1R). Here, we tested the hypothesis that OX1Rs facilitate the expression of the motor command associated with air breathing in pre-metamorphic bullfrog tadpoles (Lithobates catesbeianus). To do so, we used an isolated diencephalic brainstem preparation to determine the contributions of OX1Rs to respiratory motor output during baseline breathing, hypercapnia and hypoxia. A selective OX1R antagonist (SB-334867; 5-25 µmol l-1) or agonist (ORX-A; 200 nmol l-1 to 1 µmol l-1) was added to the superfusion media. Experiments were performed under basal conditions (media equilibrated with 98.2% O2 and 1.8% CO2), hypercapnia (5% CO2) or hypoxia (5-7% O2). Under resting conditions gill, but not lung, motor output was enhanced by the OX1R antagonist and ORX-A. Hypercapnia alone did not stimulate respiratory motor output, but its combination with SB-334867 increased lung burst frequency and amplitude, lung burst episodes, and the number of bursts per episode. Hypoxia alone increased lung burst frequency and its combination with SB-334867 enhanced this effect. Inactivation of OX1Rs during hypoxia also increased gill burst amplitude, but not frequency. In contrast with our initial hypothesis, we conclude that ORX neurons provide inhibitory modulation of the CO2 and O2 chemoreflexes in pre-metamorphic tadpoles.


Asunto(s)
Pulmón , Respiración , Animales , Larva , Orexinas , Rana catesbeiana
8.
Front Physiol ; 12: 781662, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002764

RESUMEN

Excessive carotid body responsiveness to O2 and/or CO2/H+ stimuli contributes to respiratory instability and apneas during sleep. In hypogonadal men, testosterone supplementation may increase the risk of sleep-disordered breathing; however, the site of action is unknown. The present study tested the hypothesis that testosterone supplementation potentiates carotid body responsiveness to hypoxia in adult male rats. Because testosterone levels decline with age, we also determined whether these effects were age-dependent. In situ hybridization determined that androgen receptor mRNA was present in the carotid bodies and caudal nucleus of the solitary tract of adult (69 days old) and aging (193-206 days old) male rats. In urethane-anesthetized rats injected with testosterone propionate (2 mg/kg; i.p.), peak breathing frequency measured during hypoxia (FiO2 = 0.12) was 11% greater vs. the vehicle treatment group. Interestingly, response intensity following testosterone treatment was positively correlated with animal age. Exposing ex vivo carotid body preparations from young and aging rats to testosterone (5 nM, free testosterone) 90-120 min prior to testing showed that the carotid sinus nerve firing rate during hypoxia (5% CO2 + 95% N2; 15 min) was augmented in both age groups as compared to vehicle (<0.001% DMSO). Ventilatory measurements performed using whole body plethysmography revealed that testosterone supplementation (2 mg/kg; i.p.) 2 h prior reduced apnea frequency during sleep. We conclude that in healthy rats, age-dependent potentiation of the carotid body's response to hypoxia by acute testosterone supplementation does not favor the occurrence of apneas but rather appears to stabilize breathing during sleep.

9.
Sci Rep ; 10(1): 13526, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32782285

RESUMEN

Many neurons concurrently and/or differentially release multiple neurotransmitter substances to selectively modulate the activity of distinct postsynaptic targets within a network. However, the molecular mechanisms that produce synaptic heterogeneity by regulating the cotransmitter release characteristics of individual presynaptic terminals remain poorly defined. In particular, we know little about the regulation of neuropeptide corelease, despite the fact that they mediate synaptic transmission, plasticity and neuromodulation. Here, we report that an identified Lymnaea neuron selectively releases its classical small molecule and peptide neurotransmitters, acetylcholine and FMRFamide-derived neuropeptides, to differentially influence the activity of distinct postsynaptic targets that coordinate cardiorespiratory behaviour. Using a combination of electrophysiological, molecular, and pharmacological approaches, we found that neuropeptide cotransmitter release was regulated by cross-talk between extrinsic neurotrophic factor signaling and target-specific retrograde arachidonic acid signaling, which converged on modulation of glycogen synthase kinase 3. In this context, we identified a novel role for the Lymnaea synaptophysin homologue as a specific and synapse-delimited inhibitory regulator of peptide neurotransmitter release. This study is among the first to define the cellular and molecular mechanisms underlying the differential release of cotransmitter substances from individual presynaptic terminals, which allow for context-dependent tuning and plasticity of the synaptic networks underlying patterned motor behaviour.


Asunto(s)
Lymnaea/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Sinapsis/fisiología , Transmisión Sináptica , Animales , Células Cultivadas , Lymnaea/genética , Factores de Crecimiento Nervioso/genética , Terminales Presinápticos/fisiología , Receptores Nicotínicos/metabolismo
10.
Respir Physiol Neurobiol ; 270: 103266, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31408738

RESUMEN

Physiological and environmental factors impacting respiratory homeostasis vary throughout the course of an animal's lifespan from embryo to adult and can shape respiratory development. The developmental emergence of complex neural networks for aerial breathing dates back to ancestral vertebrates, and represents the most important process for respiratory development in extant taxa ranging from fish to mammals. While substantial progress has been made towards elucidating the anatomical and physiological underpinnings of functional respiratory control networks for air-breathing, much less is known about the mechanisms establishing these networks during early neurodevelopment. This is especially true of the complex neurochemical ensembles key to the development of air-breathing. One approach to this issue has been to utilize comparative models such as anuran amphibians, which offer a unique perspective into early neurodevelopment. Here, we review the developmental emergence of respiratory behaviours in anuran amphibians with emphasis on contributions of neurochemicals to this process and highlight opportunities for future research.


Asunto(s)
Anuros/fisiología , Hipoxia/metabolismo , Fenómenos Fisiológicos Respiratorios , Sistema Respiratorio/crecimiento & desarrollo , Aire , Animales , Metamorfosis Biológica/fisiología , Respiración
12.
Am J Physiol Regul Integr Comp Physiol ; 316(3): R281-R297, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30601705

RESUMEN

Amphibian respiratory development involves a dramatic metamorphic transition from gill to lung breathing and coordination of distinct motor outputs. To determine whether the emergence of adult respiratory motor patterns was associated with similarly dramatic changes in motoneuron (MN) properties, we characterized the intrinsic electrical properties of American bullfrog trigeminal MNs innervating respiratory muscles comprising the buccal pump. In premetamorphic tadpoles (TK stages IX-XVIII) and adult frogs, morphometric analyses and whole cell recordings were performed in trigeminal MNs identified by fluorescent retrograde labeling. Based on the amplitude of the depolarizing sag induced by hyperpolarizing voltage steps, two MN subtypes (I and II) were identified in tadpoles and adults. Compared with type II MNs, type I MNs had larger sag amplitudes (suggesting a larger hyperpolarization-activated inward current), greater input resistance, lower rheobase, hyperpolarized action potential threshold, steeper frequency-current relationships, and fast firing rates and received fewer excitatory postsynaptic currents. Postmetamorphosis, type I MNs exhibited similar sag, enhanced postinhibitory rebound, and increased action potential amplitude with a smaller-magnitude fast afterhyperpolarization. Compared with tadpoles, type II MNs from frogs received higher-frequency, larger-amplitude excitatory postsynaptic currents. Input resistance decreased and rheobase increased postmetamorphosis in all MNs, concurrent with increased soma area and hyperpolarized action potential threshold. We suggest that type I MNs are likely recruited in response to smaller, buccal-related synaptic inputs as well as larger lung-related inputs, whereas type II MNs are likely recruited in response to stronger synaptic inputs associated with larger buccal breaths, lung breaths, or nonrespiratory behaviors involving powerful muscle contractions.


Asunto(s)
Branquias/crecimiento & desarrollo , Branquias/fisiología , Pulmón/crecimiento & desarrollo , Pulmón/fisiología , Metamorfosis Biológica/fisiología , Neuronas Motoras/fisiología , Rana catesbeiana/fisiología , Músculos Respiratorios/inervación , Músculos Respiratorios/fisiología , Potenciales de Acción/fisiología , Animales , Mejilla/inervación , Mejilla/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Transmisión Sináptica/fisiología , Nervio Trigémino/fisiología
13.
Adv Exp Med Biol ; 1071: 75-82, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30357736

RESUMEN

During vertebrate development, the neural networks underlying air-breathing undergo changes in connectivity and functionality, allowing lung ventilation to emerge. Yet, the factors regulating development of these critical homeostatic networks remain unresolved. In amphibians, air-breathing occurs sporadically prior to metamorphosis. However, in tadpoles of Lithobates catesbeianus (American bullfrog), hypoxia stimulates gill and lung ventilation during early development. Because accelerated metamorphosis is a useful strategy to escape deterioration of the milieu, we hypothesized that central hypoxia would elicit long-term expression of the lung motor command for air breathing in pre-metamorphic tadpoles (TK stages VI-XIII). To do this, we recorded respiratory activity from cranial nerves V and VII in isolated brainstems before, during, and up to 2 h after exposure to 15 min of mild (PwO2 range: 114-152 Torr) or moderate (PwO2 range: 38-76 Torr) hypoxia. To test for stage-dependent effects, data were compared between early (VI-IX) and mid (X-XIII) stages. Early stages responded strongly during moderate hypoxia with increased lung burst frequency (167%). Mild and moderate hypoxia increased lung burst frequency during the 2 h re-oxygenation period in early stage brainstems (136%, 497%, respectively), but produced only marginal effects on mid stage brainstems (39%, 31%, respectively). In contrast, hypoxia was not an important factor controlling fictive buccal burst frequency, which drives continuous gill ventilation in tadpoles prior to metamorphosis (all stages showed <25% increase). These preliminary results suggest that central hypoxia elicits long-term increases in lung burst frequency in a severity- and stage-dependent manner.


Asunto(s)
Hipoxia , Larva/fisiología , Pulmón/fisiología , Rana catesbeiana/fisiología , Animales , Metamorfosis Biológica , Respiración
14.
Eur J Neurosci ; 42(2): 1858-71, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25951609

RESUMEN

Respiratory behaviour relies critically upon sensory feedback from peripheral oxygen chemoreceptors. During environmental or systemic hypoxia, chemoreceptor input modulates respiratory central pattern generator activity to produce reflex-based increases in respiration and also shapes respiratory plasticity over longer timescales. The best-studied oxygen chemoreceptors are undoubtedly the mammalian carotid bodies; however, questions remain regarding this complex organ's role in shaping respiration in response to varying oxygen levels. Furthermore, many taxa possess distinct oxygen chemoreceptors located within the lungs, airways and cardiovasculature, but the functional advantage of multiple chemoreceptor sites is unclear. In this study, it is demonstrated that a distributed network of peripheral oxygen chemoreceptors exists in Lymnaea stagnalis and significantly modulates aerial respiration. Specifically, Lymnaea breath frequency and duration represent parameters that are shaped by interactions between hypoxic severity and its time-course. Using a combination of behaviour and electrophysiology approaches, the chemosensory pathways underlying hypoxia-induced changes in breath frequency/duration were explored. The current findings demonstrate that breath frequency is uniquely modulated by the known osphradial ganglion oxygen chemoreceptors during moderate hypoxia, while a newly discovered area of pneumostome oxygen chemoreception serves a similar function specifically during more severe hypoxia. Together, these findings suggest that multiple oxygen chemosensory sites, each with their own sensory and modulatory properties, act synergistically to form a functionally distributed network that dynamically shapes respiration in response to changing systemic or environmental oxygen levels. These distributed networks may represent an evolutionarily conserved strategy vis-à-vis respiratory adaptability and have significant implications for the understanding of fundamental respiratory control systems.


Asunto(s)
Plasticidad de la Célula/fisiología , Células Quimiorreceptoras/metabolismo , Hipoxia/fisiopatología , Plasticidad Neuronal/fisiología , Oxígeno/metabolismo , Respiración , Animales , Generadores de Patrones Centrales/citología , Distribución de Chi-Cuadrado , Desnervación , Lymnaea , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Placa-Clamp , Nervios Periféricos/metabolismo , Factores de Tiempo
15.
PLoS One ; 9(10): e111103, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25347295

RESUMEN

Neurotrophic factors (NTFs) support neuronal survival, differentiation, and even synaptic plasticity both during development and throughout the life of an organism. However, their precise roles in central synapse formation remain unknown. Previously, we demonstrated that excitatory synapse formation in Lymnaea stagnalis requires a source of extrinsic NTFs and receptor tyrosine kinase (RTK) activation. Here we show that NTFs such as Lymnaea epidermal growth factor (L-EGF) act through RTKs to trigger a specific subset of intracellular signalling events in the postsynaptic neuron, which lead to the activation of the tumor suppressor menin, encoded by Lymnaea MEN1 (L-MEN1) and the expression of excitatory nicotinic acetylcholine receptors (nAChRs). We provide direct evidence that the activation of the MAPK/ERK cascade is required for the expression of nAChRs, and subsequent synapse formation between pairs of neurons in vitro. Furthermore, we show that L-menin activation is sufficient for the expression of postsynaptic excitatory nAChRs and subsequent synapse formation in media devoid of NTFs. By extending our findings in situ, we reveal the necessity of EGFRs in mediating synapse formation between a single transplanted neuron and its intact presynaptic partner. Moreover, deficits in excitatory synapse formation following EGFR knock-down can be rescued by injecting synthetic L-MEN1 mRNA in the intact central nervous system. Taken together, this study provides the first direct evidence that NTFs functioning via RTKs activate the MEN1 gene, which appears sufficient to regulate synapse formation between central neurons. Our study also offers a novel developmental role for menin beyond tumour suppression in adult humans.


Asunto(s)
Genes Supresores de Tumor , Neurogénesis , Neuronas/metabolismo , Densidad Postsináptica/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Colinérgicos/metabolismo , Animales , Factor de Crecimiento Epidérmico/metabolismo , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/crecimiento & desarrollo , Ganglios de Invertebrados/metabolismo , Lymnaea , Sistema de Señalización de MAP Quinasas , Neuronas/citología , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/genética
16.
Adv Exp Med Biol ; 758: 7-17, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23080137

RESUMEN

Since the evolution of aerobic metabolism, cellular requirements for molecular oxygen have been the major driver for the development of sophisticated mechanisms underlying both invertebrate and vertebrate respiratory behaviour. Among the most important characteristics of respiration is its adaptability, which allows animals to maintain oxygen homeostasis over a wide range of environmental and metabolic conditions. In all animals, the respiratory behaviour is controlled by neural networks often termed respiratory central pattern generators (rCPG). While rCPG neurons are intrinsically capable of generating rhythmical outputs, the respiratory needs are generally "sensed" by either central or peripheral chemoreceptive neurons. The mechanisms by which chemoreceptors respond to changes in oxygen and modulate central respiratory control centers have been the focus of decades of research. However, our understanding of these mechanisms has been limited due to an inability to precisely locate oxygen chemoreceptor populations, combined with the overwhelming complexity of vertebrate neural circuits. Although mammalian models remain the gold standard for research in general, invertebrates do nevertheless offer greatly simplified neural networks that share fundamental similarities with vertebrates. The following review will provide evidence for the existence of oxygen chemoreceptors in many invertebrate groups and reveal the mechanisms by which these neurons may "perceive" environmental oxygen and drive central rCPG activity. For this, we will specifically highlight an invertebrate model, the pond snail Lymnaea stagnalis whose episodic respiratory behaviour resembles that of diving mammals. The rCPG neurons have been identified and fully characterized in this model both in vivo and in vitro. The Lymnaea respiratory network has also been reconstructed in vitro and the contributions of individual rCPG neurons towards rhythm generation characterized through direct intracellular recordings. We now provide evidence for the presence of genuine peripheral oxygen chemoreceptors in Lymnaea, and demonstrate that these neurons respond to hypoxia in a manner analogous to that of mammalian carotid bodies. These chemoreceptor cells not only drive the activity of the rCPG neurons but their synaptic connections also exhibit hypoxia-induced plasticity. The lessons learned from this model will likely reveal fundamental principles underlying both peripheral and central respiratory control mechanisms, which may be conserved in both invertebrate and vertebrate species.


Asunto(s)
Células Quimiorreceptoras/fisiología , Lymnaea/metabolismo , Neuronas/fisiología , Oxígeno/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...