Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794647

RESUMEN

Fetal growth restriction is a hallmark of Fetal Alcohol Syndrome (FAS) and is accompanied by maternal uterine circulatory maladaptation. FAS is the most severe form of Fetal Alcohol Spectrum Disorder (FASD), a term for the range of conditions that can develop in a fetus when their pregnant mother consumes alcohol. Alcohol exerts specific direct effects on lipids that control fundamental developmental processes. We previously demonstrated that direct in vitro application of phosphatidic acid (PA, the simplest phospholipid and a direct target of alcohol exposure) to excised uterine arteries from alcohol-exposed rats improved vascular function, but it is unknown if PA can rescue end organ phenotypes in our FASD animal model. Pregnant Sprague-Dawley rats (n = 40 total dams) were gavaged daily from gestational day (GD) 5 to GD 19 with alcohol or maltose dextrin, with and without PA supplementation, for a total of four unique groups. To translate and assess the beneficial effects of PA, we hypothesized that in vivo administration of PA concomitant with chronic binge alcohol would reverse uterine artery dysfunction and fetal growth deficits in our FASD model. Mean fetal weights and placental efficiency were significantly lower in the binge alcohol group compared with those in the control (p < 0.05). However, these differences between the alcohol and the control groups were completely abolished by auxiliary in vivo PA administration with alcohol, indicating a reversal of the classic FAS growth restriction phenotype. Acetylcholine (ACh)-induced uterine artery relaxation was significantly impaired in the uterine arteries of chronic in vivo binge alcohol-administered rats compared to the controls (p < 0.05). Supplementation of PA in vivo throughout pregnancy reversed the alcohol-induced vasodilatory deficit; no differences were detected following in vivo PA administration between the pair-fed control and PA alcohol groups. Maximal ACh-induced vasodilation was significantly lower in the alcohol group compared to all the other treatments, including control, control PA, and alcohol PA groups (p < 0.05). When analyzing excitatory vasodilatory p1177-eNOS, alcohol-induced downregulation of p1177-eNOS was completely reversed following in vivo PA supplementation. In summary, these novel data utilize a specific alcohol target pathway (PA) to demonstrate a lipid-based preventive strategy and provide critical insights important for the development of translatable interventions.


Asunto(s)
Modelos Animales de Enfermedad , Etanol , Trastornos del Espectro Alcohólico Fetal , Retardo del Crecimiento Fetal , Ácidos Fosfatidicos , Ratas Sprague-Dawley , Arteria Uterina , Animales , Femenino , Embarazo , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/fisiopatología , Arteria Uterina/efectos de los fármacos , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Ácidos Fosfatidicos/farmacología , Ratas , Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Placenta/irrigación sanguínea , Placenta/efectos de los fármacos , Placenta/metabolismo
2.
FASEB J ; 37(5): e22897, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37000494

RESUMEN

Alcohol exposure during gestation can lead to fetal alcohol spectrum disorders (FASD), an array of cognitive and physical developmental impairments. Over the past two and a half decades, Mammalian Target of Rapamycin (mTOR) has emerged at the nexus of many fields of study, and has recently been implicated in FASD etiology. mTOR plays an integral role in modulating anabolic and catabolic activities, including protein synthesis and autophagy. These processes are vital for proper development and can have long lasting effects following alcohol exposure, such as impaired hippocampal and synapse formation, reduced brain size, as well as cognitive, behavioral, and memory impairments. We highlight recent advances in the field of FASD, primarily with regard to animal model discoveries and discuss the interaction between alcohol and mTOR in the context of various tissues, including brain, placenta, bone, and muscle, with respect to developmental alcohol exposure paradigms. The current review focuses on novel FASD research within the context of the mTOR signaling and sheds light on mechanistic etiologies at various biological levels including molecular, cellular, and functional, across multiple stages of development and illuminates the dichotomy between the different mTOR complexes and their unique signaling roles.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Humanos , Embarazo , Animales , Femenino , Trastornos del Espectro Alcohólico Fetal/etiología , Etanol/toxicidad , Encéfalo/metabolismo , Mamíferos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Modelos Animales de Enfermedad , Efectos Tardíos de la Exposición Prenatal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...