Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 13(1): e1006567, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28103242

RESUMEN

Homeotic genes code for key transcription factors (HOX-TFs) that pattern the animal body plan. During embryonic development, Hox genes are expressed in overlapping patterns and function in a partially redundant manner. In vitro biochemical screens probing the HOX-TF sequence specificity revealed largely overlapping sequence preferences, indicating that co-factors might modulate the biological function of HOX-TFs. However, due to their overlapping expression pattern, high protein homology, and insufficiently specific antibodies, little is known about their genome-wide binding preferences. In order to overcome this problem, we virally expressed tagged versions of limb-expressed posterior HOX genes (HOXA9-13, and HOXD9-13) in primary chicken mesenchymal limb progenitor cells (micromass). We determined the effect of each HOX-TF on cellular differentiation (chondrogenesis) and gene expression and found that groups of HOX-TFs induce distinct regulatory programs. We used ChIP-seq to determine their individual genome-wide binding profiles and identified between 12,721 and 28,572 binding sites for each of the nine HOX-TFs. Principal Component Analysis (PCA) of binding profiles revealed that the HOX-TFs are clustered in two subgroups (Group 1: HOXA/D9, HOXA/D10, HOXD12, and HOXA13 and Group 2: HOXA/D11 and HOXD13), which are characterized by differences in their sequence specificity and by the presence of cofactor motifs. Specifically, we identified CTCF binding sites in Group 1, indicating that this subgroup of HOX-proteins cooperates with CTCF. We confirmed this interaction by an independent biological assay (Proximity Ligation Assay) and demonstrated that CTCF is a novel HOX cofactor that specifically associates with Group 1 HOX-TFs, pointing towards a possible interplay between HOX-TFs and chromatin architecture.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genoma , Proteínas de Homeodominio/metabolismo , Proteínas Represoras/metabolismo , Activación Transcripcional , Animales , Factor de Unión a CCCTC , Pollos , Condrogénesis , Cromatina/metabolismo , Mesodermo/metabolismo , Unión Proteica
2.
Genome Res ; 23(12): 2091-102, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23995701

RESUMEN

Gene regulation by transcription factors (TFs) determines developmental programs and cell identity. Consequently, mutations in TFs can lead to dramatic phenotypes in humans by disrupting gene regulation. To date, the molecular mechanisms that actually cause these phenotypes have been difficult to address experimentally. ChIP-seq, which couples chromatin immunoprecipitation with high-throughput sequencing, allows TF function to be investigated on a genome-wide scale, enabling new approaches for the investigation of gene regulation. Here, we present the application of ChIP-seq to explore the effect of missense mutations in TFs on their genome-wide binding profile. Using a retroviral expression system in chicken mesenchymal stem cells, we elucidated the mechanism underlying a novel missense mutation in HOXD13 (Q317K) associated with a complex hand and foot malformation phenotype. The mutated glutamine (Q) is conserved in most homeodomains, a notable exception being bicoid-type homeodomains that have lysine (K) at this position. Our results show that the mutation results in a shift in the binding profile of the mutant toward a bicoid/PITX1 motif. Gene expression analysis and functional assays using in vivo overexpression studies confirm that the mutation results in a partial conversion of HOXD13 into a TF with bicoid/PITX1 properties. A similar shift was not observed with another mutation, Q317R, which is associated with brachysyndactyly, suggesting that the bicoid/PITX1-shift observed for Q317K might be related to the severe clinical phenotype. The methodology described can be used to investigate a wide spectrum of TFs and mutations that have not previously been amenable to ChIP-seq experiments.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Deformidades Congénitas de las Extremidades/genética , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Embrión de Pollo , Inmunoprecipitación de Cromatina , Femenino , Perfilación de la Expresión Génica , Genoma Humano , Glutamina/genética , Humanos , Células Madre Mesenquimatosas/metabolismo , Mutación Missense , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Transcripción Paired Box/genética , Fenotipo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética
3.
Am J Hum Genet ; 82(2): 464-76, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18252226

RESUMEN

Impaired fetal movement causes malformations, summarized as fetal akinesia deformation sequence (FADS), and is triggered by environmental and genetic factors. Acetylcholine receptor (AChR) components are suspects because mutations in the fetally expressed gamma subunit (CHRNG) of AChR were found in two FADS disorders, lethal multiple pterygium syndrome (LMPS) and Escobar syndrome. Other AChR subunits alpha1, beta1, and delta (CHRNA1, CHRNB1, CHRND) as well as receptor-associated protein of the synapse (RAPSN) previously revealed missense or compound nonsense-missense mutations in viable congenital myasthenic syndrome; lethality of homozygous null mutations was predicted but never shown. We provide the first report to our knowledge of homozygous nonsense mutations in CHRNA1 and CHRND and show that they were lethal, whereas novel recessive missense mutations in RAPSN caused a severe but not necessarily lethal phenotype. To elucidate disease-associated malformations such as frequent abortions, fetal edema, cystic hygroma, or cardiac defects, we studied Chrna1, Chrnb1, Chrnd, Chrng, and Rapsn in mouse embryos and found expression in skeletal muscles but also in early somite development. This indicates that early developmental defects might be due to somite expression in addition to solely muscle-specific effects. We conclude that complete or severe functional disruption of fetal AChR causes lethal multiple pterygium syndrome whereas milder alterations result in fetal hypokinesia with inborn contractures or a myasthenic syndrome later in life.


Asunto(s)
Anomalías Múltiples/genética , Enfermedades Fetales/genética , Síndromes Miasténicos Congénitos/genética , Receptores Colinérgicos/genética , Receptores Nicotínicos/genética , Animales , Genes Recesivos/genética , Humanos , Hibridación in Situ , Ratones , Modelos Biológicos , Músculo Esquelético/metabolismo , Mutación/genética , Síndromes Miasténicos Congénitos/embriología , Linaje
4.
Ann Neurol ; 54(6): 719-24, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14681881

RESUMEN

Autosomal recessive spinal muscular atrophy with respiratory distress type 1 (SMARD1) is the second anterior horn cell disease in infants in which the genetic defect has been defined. SMARD1 results from mutations in the gene encoding the immunoglobulin micro-binding protein 2 (IGHMBP2) on chromosome 11q13. Our aim was to review the clinical features of 29 infants affected with SMARD1 and report on 26 novel IGHMBP2 mutations. Intrauterine growth retardation, weak cry, and foot deformities were the earliest symptoms of SMARD1. Most patients presented at the age of 1 to 6 months with respiratory distress due to diaphragmatic paralysis and progressive muscle weakness with predominantly distal lower limb muscle involvement. Sensory and autonomic nerves are also affected. Because of the poor prognosis, there is a demand for prenatal diagnosis, and clear diagnostic criteria for infantile SMARD1 are needed. The diagnosis of SMARD1 should be considered in infants with non-5q spinal muscular atrophy, neuropathy, and muscle weakness and/or respiratory distress of unclear cause. Furthermore, consanguineous parents of a child with sudden infant death syndrome should be examined for IGHMBP2 mutations.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Unión al ADN , Síndrome de Dificultad Respiratoria del Recién Nacido/complicaciones , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Atrofias Musculares Espinales de la Infancia/complicaciones , Atrofias Musculares Espinales de la Infancia/genética , Factores de Transcripción , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Síndrome de Dificultad Respiratoria del Recién Nacido/fisiopatología , Atrofias Musculares Espinales de la Infancia/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA