Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 624(7990): 130-137, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37993711

RESUMEN

The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.


Asunto(s)
Regulación del Apetito , Tronco Encefálico , Ingestión de Alimentos , Retroalimentación Fisiológica , Alimentos , Saciedad , Estómago , Regulación del Apetito/fisiología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Ingestión de Alimentos/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Saciedad/fisiología , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Estómago/fisiología , Gusto/fisiología , Factores de Tiempo , Animales , Ratones
2.
Neuron ; 107(3): 454-469.e6, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32574560

RESUMEN

Neuroscience relies on techniques for imaging the structure and dynamics of neural circuits, but the cell bodies of individual neurons are often obscured by overlapping fluorescence from axons and dendrites in surrounding neuropil. Here, we describe two strategies for using the ribosome to restrict the expression of fluorescent proteins to the neuronal soma. We show first that a ribosome-tethered nanobody can be used to trap GFP in the cell body, thereby enabling direct visualization of previously undetectable GFP fluorescence. We then design a ribosome-tethered GCaMP for imaging calcium dynamics. We show that this reporter faithfully tracks somatic calcium dynamics in the mouse brain while eliminating cross-talk between neurons caused by contaminating neuropil. In worms, this reporter enables whole-brain imaging with faster kinetics and brighter fluorescence than commonly used nuclear GCaMPs. These two approaches provide a general way to enhance the specificity of imaging in neurobiology.


Asunto(s)
Encéfalo/diagnóstico por imagen , Calcio/metabolismo , Cuerpo Celular/patología , Neuronas/patología , Imagen Óptica/métodos , Ribosomas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Caenorhabditis elegans , Proteínas de Unión al Calcio , Cuerpo Celular/metabolismo , Proteínas Fluorescentes Verdes , Ratones , Neuronas/metabolismo , Neurópilo , Proteína Ribosómica L10/metabolismo , Anticuerpos de Dominio Único
3.
Proc Natl Acad Sci U S A ; 114(7): E1263-E1272, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28143932

RESUMEN

A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9-containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9-based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits.


Asunto(s)
Caenorhabditis elegans/metabolismo , Sinapsis Eléctricas/metabolismo , Uniones Comunicantes/metabolismo , Células Receptoras Sensoriales/metabolismo , Conducta Social , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sinapsis Eléctricas/genética , Uniones Comunicantes/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Actividad Motora/genética , Feromonas/metabolismo , Transducción de Señal/genética
4.
Methods Mol Biol ; 1068: 285-92, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24014370

RESUMEN

The pheromone drop test is a simple and robust behavioral assay to quantify acute avoidance of pheromones in C. elegans, and the suppression of avoidance by attractive pheromones. In the pheromone drop test, water-soluble C. elegans pheromones are individually applied to animals that are freely moving on a large plate. Upon encountering a repellent, each C. elegans animal may or may not try to escape by making a long reversal. The fraction of animals that make a long reversal response indicates the repulsiveness of a given pheromone to a specific genotype/strain of C. elegans. Performing the drop test in the presence of bacterial food enhances the avoidance response to pheromones. Attraction to pheromones can be assayed by the suppression of reversals to repulsive pheromones or by the suppression of the basal reversal rate to buffer.


Asunto(s)
Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Locomoción/efectos de los fármacos , Feromonas/farmacología , Animales , Conducta Animal/fisiología , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacología , Actividad Motora/efectos de los fármacos , Feromonas/metabolismo
5.
Neuron ; 75(4): 585-92, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22920251

RESUMEN

Pheromone responses are highly context dependent. For example, the C. elegans pheromone ascaroside C9 (ascr#3) is repulsive to wild-type hermaphrodites, attractive to wild-type males, and usually neutral to "social" hermaphrodites with reduced activity of the npr-1 neuropeptide receptor gene. We show here that these distinct behavioral responses arise from overlapping push-pull circuits driven by two classes of pheromone-sensing neurons. The ADL sensory neurons detect C9 and, in wild-type hermaphrodites, drive C9 repulsion through their chemical synapses. In npr-1 mutant hermaphrodites, C9 repulsion is reduced by the recruitment of a gap junction circuit that antagonizes ADL chemical synapses. In males, ADL sensory responses are diminished; in addition, a second pheromone-sensing neuron, ASK, antagonizes C9 repulsion. The additive effects of these antagonistic circuit elements generate attractive, repulsive, or neutral pheromone responses. Neuronal modulation by circuit state and sex, and flexibility in synaptic output pathways, may permit small circuits to maximize their adaptive behavioral outputs.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Neuronas/fisiología , Neurotransmisores/metabolismo , Feromonas/farmacología , Caracteres Sexuales , Sinapsis/efectos de los fármacos , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Calcio/metabolismo , Complemento C9/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Reacción de Fuga/efectos de los fármacos , Reacción de Fuga/fisiología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores Inmunológicos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Mutación/genética , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/clasificación , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Feromonas/metabolismo , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/genética , Receptores de Neuropéptido Y/genética , Receptores Odorantes/genética , Sinapsis/clasificación , Sinapsis/genética , Canales Catiónicos TRPV , Canales de Potencial de Receptor Transitorio/genética
6.
Neuron ; 61(5): 692-9, 2009 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-19285466

RESUMEN

Most heritable behavioral traits have a complex genetic basis, but few multigenic traits are understood at a molecular level. Here we show that the C. elegans strains N2 and CB4856 have opposite behavioral responses to simultaneous changes in environmental O(2) and CO(2). We identify two quantitative trait loci (QTL) that affect this trait and map each QTL to a single-gene polymorphism. One gene, npr-1, encodes a previously described neuropeptide receptor whose high activity in N2 promotes CO(2) avoidance. The second gene, glb-5, encodes a neuronal globin domain protein whose high activity in CB4856 modifies behavioral responses to O(2) and combined O(2)/CO(2) stimuli. glb-5 acts in O(2)-sensing neurons to increase O(2)-evoked calcium signals, implicating globins in sensory signaling. An analysis of wild C. elegans strains indicates that the N2 alleles of npr-1 and glb-5 arose recently in the same strain background, possibly as an adaptation to laboratory conditions.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Sitios de Carácter Cuantitativo , Sensación/fisiología , Animales , Conducta Animal/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Dióxido de Carbono/farmacología , Mapeo Cromosómico/métodos , Movimiento , Oxígeno/farmacología , Mutación Puntual , Polimorfismo Genético , Receptores de Neuropéptido Y/genética , Sensación/efectos de los fármacos , Sensación/genética , Células Receptoras Sensoriales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...