Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Neurorehabil ; 17(1): e4, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38585030

RESUMEN

In this study, we conducted a survey targeting 191 physical therapists (PTs) and 159 occupational therapists (OTs) in South Korea to explore attitudes toward virtual rehabilitation. Utilizing the Korean version of the ADOPT VR by Glegg et al., OT exhibited significantly more experience with virtual reality (VR) and active video games (AVG) than PT. Therapists with VR/AVG experience scored significantly higher in most categories, and the scores in each category were significantly correlated with the Behavioral Intention category, reflecting the willingness to use VR/AVG. The biggest barriers identified were insufficient funds and setup assistance for the equipment. Differences in responses between the groups with and without VR/AVG experience were most prominent in terms of lack of interest and funding. Therapists' attitudes, perceptions, and intentions toward VR/AVG are crucial factors in the establishment and implementation of VR/AVG; thus, the results of this study provide valuable evidence for future policies related to VR/AVG in rehabilitation medicine.

3.
Biomacromolecules ; 24(7): 3043-3050, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37283006

RESUMEN

Despite the well-known advantages of lipid vesicles for drug and gene delivery, structural instability limits their practical applications and requires strictly regulated conditions for transport and storage. Chemical crosslinking and in situ polymerization have been suggested to increase the membrane rigidity and dispersion stability of lipid vesicles. However, such chemically modified lipids sacrifice the dynamic nature of lipid vesicles and obfuscate their in vivo metabolic fates. Here, we present highly robust multilamellar lipid vesicles through the self-assembly of preformed, cationic large unilamellar vesicles (LUVs) with hydrolyzed collagen peptides (HCPs). The cationic LUVs undergo vesicle-to-vesicle attachment and structural reorganization through polyionic complexation with HCPs, resulting in the formation of multilamellar collagen-lipid vesicles (MCLVs). The resulting MCLVs exhibit excellent structural stability against variations in pH and ionic strength and the addition of surfactants. Particularly, the MCLVs maintain their structural stability against repeated freeze-thaw stresses, proving the unprecedented stabilization effect of biological macromolecules on lipid lamellar structures. This work provides a practically attractive technique for the simple and quick fabrication of structurally robust lipid nanovesicles without covalent crosslinkers, organic solvents, and specialized instruments.


Asunto(s)
Tensoactivos , Liposomas Unilamelares , Liposomas Unilamelares/química , Tensoactivos/química , Cationes , Lípidos/química , Péptidos , Liposomas/química
4.
J Colloid Interface Sci ; 646: 311-319, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201459

RESUMEN

HYPOTHESIS: Eco-friendly processes that are emerging around the world require mass production of low-energy, low-cost nanoemulsions. The process involving the high-concentrated nanoemulsions and diluting them with a large amount of solvent can certainly save the cost; however, not much detailed research has been conducted on the stability mechanism and rheological characteristics of high-concentrated nanoemulsions. EXPERIMENTS: In this study, we produced nanoemulsions via the microfluidization (MF) process, comparing their dispersion stability and rheological characteristics with macroemulsions across various oil and surfactant concentrations. Droplet mobility and dispersion stability depended on these concentrations, with Asakura-Osawa-type attractive depletion considering interparticle interaction's role in stability changes. We investigated nanoemulsions' long-term stability based on turbidity and droplet size changes over four weeks, proposing a stability diagram showing four different states depending on emulsification conditions. FINDINGS: We explored the microstructure of emulsions under varying mixing conditions, observing their effects on droplet mobility and rheological properties. We monitored changes in rheology, turbidity, and droplet size over 4 weeks, establishing stability diagrams for macro- and nanoemulsions. The stability diagrams revealed that the stability of emulsions are sensitively dependent on the droplet size, concentrations, surfactant cocentrations and the strcture of coexistent phases in case of macroscopic segregation are significantly different depending on the droplet sizes. We identified their respective stability mechanisms and discovered the relationship between stability and rheological properties for highly concentrated nanoemulsion.

5.
ACS Appl Mater Interfaces ; 14(32): 36331-36340, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35917318

RESUMEN

In this work, we utilize skin penetration enhancers (SPEs) such as ceramide and fatty acids in lipid nanovesicles to promote the transdermal delivery of active ingredients. These SPE-incorporated lipid nanovesicles (SPE-LNV) interact with the constituents of skin's outermost stratum corneum (SC) layer, enabling even niacinamide and adenosine with high water solubility to effectively permeate through, leading to enhanced skin efficacy. We demonstrate by both in vitro and in vivo skin permeation studies that the SPE-LNV formulation containing both ceramide and fatty acids (LNV-CF) exhibits deeper penetration depth and faster permeation rate compared to conventional lipid nanovesicles (LNV) without SPE as well as LNV-C with only ceramide. Moreover, in vivo clinical trials were also performed to confirm that LNV-CF most effectively mediates the delivery of niacinamide and adenosine, resulting in a substantial decrease in melanin index as well as skin wrinkle compared to the control groups. We envision that the strategy of incorporating both ceramide and fatty acids in lipid nanovesicles offers a simple and convenient route for the rapid and effective delivery of water-soluble active ingredients across the skin barrier layer.


Asunto(s)
Absorción Cutánea , Piel , Adenosina , Ceramidas/metabolismo , Ácidos Grasos , Niacinamida , Piel/metabolismo , Agua/metabolismo
6.
J Cell Physiol ; 236(11): 7450-7463, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33993476

RESUMEN

Cellular elasticity is a key factor related to a broad range of physiological and pathological processes. The elasticity of a single cell has thus emerged as a potential biomarker to characterize the cellular state. Both internal and external stimuli affect cellular elasticity, and changes in elasticity can cause alterations in cellular characteristics or function. The application of electric fields (EFs) is a promising method that can be used to change cellular elasticity; however, the mechanisms underlying its effect remain unknown. Here, we demonstrate EFs-induced elasticity changes in human dermal fibroblasts and discuss the underlying mechanism related to actin polymerization. Cellular elasticity increases after EF (50 mV/mm) stimulation, reaching a maximum at 30 min before decreasing between 30 and 120 min. The cellular elasticity under EF stimulation, regardless of stimulation time, is higher than that of the control. F-actin regulates the elasticity of cells through gelsolin activation. We show changes in intracellular Ca2+ caused by EFs, which induced gelsolin activation and F-actin content changes. This result demonstrates a series of processes in which external electrical stimulation conditions regulate cellular elasticity.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Electricidad , Fibroblastos/metabolismo , Actinas/metabolismo , Células Cultivadas , Módulo de Elasticidad , Gelsolina/metabolismo , Humanos , Microscopía de Fuerza Atómica , Factores de Tiempo
7.
Skin Res Technol ; 26(6): 914-922, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32594564

RESUMEN

PURPOSE: An electric field (EF) can be used to change the mechanical properties of cells and skin tissues. We demonstrate EF-induced elasticity changes in human dermal fibroblasts (HDFs) and a human skin equivalent and identify the underlying principles related to the changes. METHODS: HDFs and human skin equivalent were stimulated with electric fields of 1.0 V/cm. Change in cellular elasticity was determined by using atomic force microscopy. Effects of EF on the biomechanical and chemical properties of a human skin equivalent were analyzed. In cells and tissues, the effects of EF on biomarkers of cellular elasticity were investigated at the gene and protein levels. RESULTS: In HDFs, the cellular elasticity was increased and the expression of biomarkers of cellular elasticity was regulated by the EF. Expression of the collagen protein in the human skin equivalent was changed by EF stimulation; however, changes in density and microstructure of the collagen fibrils were not significant. The viscoelasticity of the human skin equivalent increased in response to EF stimulation, but molecular changes were not observed in collagen. CONCLUSIONS: Elasticity of cells and human skin equivalent can be regulated by electrical stimulation. Especially, the change in cellular elasticity was dependent on cell age.


Asunto(s)
Elasticidad , Electricidad , Fibroblastos , Piel , Biomarcadores , Células Cultivadas , Colágeno , Matriz Extracelular , Fibroblastos/citología , Humanos , Microscopía de Fuerza Atómica
8.
Int J Pharm ; 579: 119162, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32081793

RESUMEN

Herein, we report on a ceramide-coassembled lipid nanovehicle (CLNV) system that can enhance the penetration of active ingredients through the skin barrier by taking advantage of molecular associations between ceramide and lipids in the stratum corneum (SC) layer. For this purpose, we fabricated CLNVs consisting of an asymmetric lipid and a cholesterol derivative. They showed excellent long-term dispersion stability without molecular crystallization of ceramide. Upon forming a stable aqueous dispersion, the CLNVs retained their initial vehicle structure even under harsh conditions including high storage temperatures or salinity conditions. From in vitro skin barrier recovery tests, we observed that topical treatment with CLNVs induced the SC to restore its lamellar structure to the same condition as that prior to chemical damage. An in vivo skin penetration study additionally confirmed that skin penetration was enhanced, since the CLNVs were able to effectively interact with the SC layer. From these results, the CLNVs with robust molecular layer endow various applications in wide range applications including transdermal pharmaceutics delivery systems and cosmetics field.


Asunto(s)
Ceramidas/química , Lípidos/química , Nanopartículas/química , Polietilenglicoles/química , Absorción Cutánea/efectos de los fármacos , Administración Tópica , Portadores de Fármacos , Estabilidad de Medicamentos , Humanos
9.
ACS Appl Mater Interfaces ; 10(32): 27344-27354, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30039969

RESUMEN

UV filters can initiate redox reactions of oxygen and water when exposed to sunlight, generating reactive oxygen species (ROS) that deteriorate the products containing them and cause biological damages. This photochemical reactivity originates from the high chemical potential of UV filters, which also determines the optical properties desirable for sunscreen applications. We hypothesize that this dilemma can be alleviated if the photochemical pathway of UV filters is altered to coupling with redox active molecules. Here, we employ tannic acid (TA) as a key molecule for controlling the photochemical properties of titanium dioxide nanoparticles (TiO2 NPs). TA provides an unusual way for layer-by-layer assembly of TiO2 NPs by the formation of a ligand-to-metal charge transfer complex that alters the nature of UV absorption of TiO2 NPs. The galloyl moieties of TA efficiently scavenge ROS due to the stabilization of ROS by intramolecular hydrogen bonding while facilitating UV screening through direct charge injection from TA to the conduction band of TiO2. The TiO2-TA multilayers assembled in open porous polymer microspheres substantially increased sun protection while dramatically reducing ROS under UV exposure. The assembled structure exhibits excellent in vivo anti-UV skin protection against epidermal hyperplasia, inflammation, and keratinocyte apoptosis without long-term toxicity.


Asunto(s)
Titanio/química , Nanopartículas del Metal , Especies Reactivas de Oxígeno , Protectores Solares , Taninos , Rayos Ultravioleta
10.
Sci Rep ; 7(1): 14728, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116214

RESUMEN

Noble metal nanostructures have been intensively investigated as active substrates for surface-enhanced Raman spectroscopy (SERS) from visible to near-IR wavelengths. However, metal nanoparticle-based SERS analysis in solutions is very challenging due to uncontrollable and irreproducible colloid aggregation. Here we report the templated synthesis of porous gold-silica hybrid microspheres and their application as reusable colloidal SERS substrates. Mesoporous polymer microspheres are synthesized and used as templates for the synthesis of non-aggregated gold nanoparticles, followed by polydopamine-mediated silicification to fabricate mesoporous gold-silica hybrid microspheres. The mesoporous hybrid particles detect crystal violet in the order of 10-8 M and provide the structural durability of the immobilized gold nanoparticles, allowing them to be recycled for repeated SERS analyses for analytes in a solution with the similar sensitivity. This work suggests that the mesoporous gold-silica hybrid microspheres are attractive SERS substrates in terms of reusability, sensitivity, and stability.

11.
Eur J Pharm Sci ; 78: 111-20, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26165622

RESUMEN

Over the past decades, there has been a growing interest in dermal drug delivery. Although various novel delivery devices and methods have been developed, dermal delivery is still challenging because of problems such as poor drug permeation, instability of vesicles and drug leakage from vesicles induced by fusion of vesicles. To solve the vesicle instability problems in current dermal delivery systems, we developed materials comprised of liquid crystals as a new delivery vehicle of retinyl palmitate and report the characterization of the liquid crystals using a Mueller matrix polarimetry. The stability of the liquid-crystal materials was evaluated using the polarimeter as a novel evaluation tool along with other conventional methods. The dermal delivery of retinyl palmitate was investigated through the use of confocal Raman spectroscopy. The results indicate that the permeation of retinyl palmitate was enhanced by up to 106% compared to that using an ordinary emulsion with retinyl palmitate.


Asunto(s)
Cristales Líquidos/química , Absorción Cutánea , Vitamina A/análogos & derivados , Administración Cutánea , Adulto , Diterpenos , Emulsiones , Femenino , Humanos , Lípidos/química , Estructura Molecular , Ésteres de Retinilo , Espectrometría Raman , Vitamina A/administración & dosificación , Vitamina A/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...