Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 17(5): 3482-9, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25533311

RESUMEN

Gasochromic VO2 thin films were fabricated by the sol-gel spin-coating technique. The results of X-ray absorption spectroscopy and resonant inelastic X-ray scattering spectroscopy reveal that the origin of gasochromic coloration in VO2 is strongly related to the modulation of its structure and the electron-electron correlation. Upon gasochromic coloration, not only does the valence state change with the incorporation of hydrogen, but also the film undergoes the modification of the local atomic structure. The structural distortion varies the strength of hybridization of the O 2p-V 3d states and the bond distance of V-O and V-O varies. In the hydric process, the local atomic structure of VO2 changes from that of an un-symmetric to that of a symmetric V-O framework. The incorporated hydrogen adds electrons into the V 3d t2g orbital, enhancing the electron-electron correlation by reducing the V-V distance. This work presents a new physical insight in which the modulation of the electron-electron correlation is exploited to control the bleached and colored states, giving rise to the gasochromic phenomenon. The strong correlation among atomic spatial rearrangement, electronic structures, and transmittance supports a cooperative mechanism of the VO2 gasochromic transition. These results reveal a clear correlation between the dynamics of the lattice structure and the electronic properties and suggest a possible pathway to gasochromism and elucidation of its mechanism.

2.
Phys Chem Chem Phys ; 16(10): 4699-708, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24468855

RESUMEN

VOx films were deposited by radio-frequency reactive magnetron sputtering from a vanadium target at room temperature. Local atomic and electronic structures of the films were then modified by thermal annealing. The oxidation state and structural and gasochromic properties of the films were elucidated by X-ray absorption spectroscopy. Analytical results indicate that the as-deposited VOx films were amorphous with mixed V(4+) and V(5+) valences. The amorphous VOx had a disordered and expanded lamellar structure resembling that of polymer-intercalated V2O5 gels. VOx films were crystallized into orthorhombic V2O5 at 300 °C, and the lamellar structure was eliminated at 400 °C. Additionally, the gasochromic reaction reduced the vanadium valence via intervalence transitions between V(5+) and V(3+). Moreover, removing the lamellar structure reduced the gasochromic rate, and the gasochromic reaction transformed the V2O5 crystalline phase irreversibly into an H1.43V2O5 phase. Based on the results of this study, amorphous VOx with a lamellar structure is recommended for use in H2 gas sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...