Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
ACS Omega ; 9(1): 1362-1374, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222601

RESUMEN

Previously, refractory high-entropy alloys (HEAs) with high crystallinity were synthesized using a configurable target without heat treatment. This study builds upon prior investigations to develop nonrefractory elemental HEAs with low crystallinity using a novel target system. Different targets with various elemental compositions, i.e., Co20Cr20Ni20Mn20Mo20 (target 1), Co30Cr15Ni25Mn15Mo15 (target 2), and Co15Cr25Cu20Mn20Ni20 (target 3), are designed to modify the phase structure. The elemental composition is varied to ensure face-centered cubic (FCC) or body-centered cubic (BCC) phase stabilization. In target 1, the FCC and BCC phases coexist, whereas targets 2 and 3 are characterized by a single FCC phase. Thin films based on targets 1 and 2 exhibit crystalline phases followed by annealing, as indicated by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. In contrast, target 3 yields crystalline thin films without any heat treatment. The thin-film coatings are classified based on the atomic size difference (δ). The δ value for the target with the elemental composition CoCrMoMnNi is 9.7, i.e., ≥6.6, corresponding to an HEA with an amorphous phase. However, the annealed thin film is considered a multiprincipal elemental alloy. In contrast, δ for the CoCrCuMnNi HEA is 5, i.e., ≤6.6, upon the substitution of Mo with Cu, and a solid solution phase is formed without any heat treatment. Thus, the degree of crystallinity can be controlled through heat treatment and the manipulation of δ in the absence of heat treatment. The XRD results clarify the crystallinity and phase structure, indicating the presence of FCC or a combination of FCC and BCC phases. The outcomes are consistent with those obtained through the analysis of the valence electron concentration based on X-ray photoelectron spectroscopy. Furthermore, a selected area electron diffraction analysis confirms the presence of both amorphous and crystalline structures in the HEA thin films. Additionally, phase evolution and segregation are observed at 500 °C.

3.
Biomed Mater ; 19(1)2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37972541

RESUMEN

This study investigated the effects on odontoblast differentiation of a 3D-printed poly-ϵ-caprolactone (PCL) scaffold that incorporated leptin. Material extrusion-type 3D printing with a 43 000-molecular weight PCL material was used to fabricate a PCL scaffold with a 6 mm diameter, 1 mm height, and 270-340 µm pore size. The experimental groups were PCL scaffolds (control group), PCL scaffolds with aminated surfaces (group A), and PCL scaffolds with leptin on the aminated surface (group L). The aminated surface was treated with 1,6-hexanediamine and verified by ninhydrin analysis. Leptin loading was performed using Traut's reagent and 4-(N-Maleimidomethyl)cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt (Sulfo-SMCC). Groups A and L showed significantly higher surface wettability, pulp cell adhesion, and proliferation than the control group. Group L exhibited increased alkaline phosphatase, calcification deposits, and mRNA and protein expression of dentin sialophosphoprotein and dentin matrix acidic phosphoprotein 1 compared with the control group. In this study, a 3D-printed PCL scaffold containing leptin was enhanced odontoblast differentiation and dental pulp cells adhesion and proliferation.


Asunto(s)
Leptina , Andamios del Tejido , Humanos , Pulpa Dental , Poliésteres , Diferenciación Celular , Impresión Tridimensional , Proliferación Celular , Ingeniería de Tejidos
4.
ACS Omega ; 8(31): 28333-28343, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37576658

RESUMEN

This study presents a novel synthesis route for high-entropy alloys (HEAs) and high-entropy metallic glass (HEMG) using radio frequency (RF) magnetron sputtering and controlling the HEA phase selection according to atomic size difference (δ) and film thickness. The preparation of HEAs using sputtering requires either multitargets or the preparation of a target containing at least five distinct elements. In developing HEA-preparation techniques, the emergence of a novel sputtering target system is promising to prepare a wide range of HEAs. A new HEA-preparation technique is developed to avoid multitargets and configure the target elements with the required components in a single target system. Because of a customizable target facility, initially, a TiZrNbMoTaCr target emerged with an amorphous phase owing to a high δ value of 7.6, which was followed by a solid solution (SS) by lowering the δ value to 5 (≤6.6). Thus, this system was tested for the first time to prepare TiZrNbMoTa HEA and TiZrNbMoTa HEMG via RF magnetron sputtering. Both films were analyzed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, field emission scanning electron microscopy cross-sectional thickness, and atomic force microscopy (AFM). Furthermore, HEMG showed higher hardness 10.3 (±0.17) GPa, modulus 186 (±7) GPa, elastic deformation (0.055) and plastic deformation (0.032 GPa), smooth surface, lower corrosion current density (Icorr), and robust cell viability compared to CP-Ti and HEA. XRD analysis of the film showed SS with a body-centered cubic (BCC) structure with (110) as the preferred orientation. The valence electron concentration [VEC = 4.8 (<6.87)] also confirmed the BCC structure. Furthermore, the morphology of the thin film was analyzed through AFM, revealing a smooth surface for HEMG. Inclusively, the concept of configurational entropy (ΔSmix) is applied and the crystalline phase is achieved at room temperature, optimizing the processing by avoiding further furnace usage.

5.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240234

RESUMEN

The alternative antibacterial treatment photothermal therapy (PTT) significantly affects oral microbiota inactivation. In this work, graphene with photothermal properties was coated on a zirconia surface using atmospheric pressure plasma, and then the antibacterial properties against oral bacteria were evaluated. For the graphene oxide coating on the zirconia specimens, an atmospheric pressure plasma generator (PGS-300, Expantech, Suwon, Republic of Korea) was used, and an Ar/CH4 gas mixture was coated on a zirconia specimen at a power of 240 W and a rate of 10 L/min. In the physiological property test, the surface properties were evaluated by measuring the surface shape of the zirconia specimen coated with graphene oxide, as well as the chemical composition and contact angle of the surface. In the biological experiment, the degree of adhesion of Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis) was determined by crystal violet assay and live/dead staining. All statistical analyzes were performed using SPSS 21.0 (SPSS Inc., Chicago, IL, USA). The group in which the zirconia specimen coated with graphene oxide was irradiated with near-infrared rays demonstrated a significant reduction in the adhesion of S. mutans and P. gingivalis compared with the group not irradiated. The oral microbiota inactivation was reduced by the photothermal effect on the zirconia coated with graphene oxide, exhibiting photothermal properties.


Asunto(s)
Grafito , Grafito/farmacología , Grafito/química , Propiedades de Superficie , Antibacterianos/farmacología
6.
Nanomaterials (Basel) ; 13(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986017

RESUMEN

High-entropy alloys (HEAs) contain more than five alloying elements in a composition range of 5-35% and with slight atomic size variation. Recent narrative studies on HEA thin films and their synthesis through deposition techniques such as sputtering have highlighted the need for determining the corrosion behaviors of such alloys used as biomaterials, for example, in implants. Coatings composed of biocompatible elements such as titanium, cobalt, chrome, nickel, and molybdenum at the nominal composition of Co30Cr20Ni20Mo20Ti10 were synthesized by means of high-vacuum radiofrequency magnetron (HVRF) sputtering. In scanning electron microscopy (SEM) analysis, the coating samples deposited with higher ion densities were thicker than those deposited with lower ion densities (thin films). The X-ray diffraction (XRD) results of the thin films heat treated at higher temperatures, i.e., 600 and 800 °C, revealed a low degree of crystallinity. In thicker coatings and samples without heat treatment, the XRD peaks were amorphous. The samples coated at lower ion densities, i.e., 20 µAcm-2, and not subjected to heat treatment yielded superior results in terms of corrosion and biocompatibility among all the samples. Heat treatment at higher temperatures led to alloy oxidation, thus compromising the corrosion property of the deposited coatings.

7.
Int J Prosthodont ; 36(1): 71-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36853227

RESUMEN

This manuscript presents a more accurate methodology, in comparison to extant approaches, that enables errorless congruence between an implant scanbody and its counterparts in the scanbody library of a dental computer-aided design (CAD) application. The proposed method deletes corners and difficult intraoral scanning regions and selects only the remaining flat and wide scanbody planes in the library. Achieving overlap between the portions of the actual scanbody data without distortion using an intraoral scanner is a novel development that is expected to represent a new standard in scanbody library alignment.


Asunto(s)
Diseño Asistido por Computadora , Implantes Dentales
8.
Int J Nanomedicine ; 17: 6551-6560, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36575697

RESUMEN

Objective: Mid-to-long term use of provisional crowns in the oral cavity is associated with bacterial adhesion and biofilm formation, thus necessitating provisional crowns exhibiting antibacterial properties to prevent the occurrence of gingivitis and periodontal disease. This study aimed to evaluate the antibacterial effect of zirconia nanoparticle-containing polyethyl methacrylate (PEMA) resin for provisional restorations. Methods: Zirconia nanoparticles were added to the monomer of PEMA resin for provisional restorations, and the mixture was stirred for 2 h using a magnetic stirrer. Disk-shaped specimens were prepared by mixing the polymer with the nanoparticle solution. The control group contained pure PEMA resin samples, and the experimental groups Group Z2, Group Z4, and Group Z8 included PEMA resin specimens containing 2, 4, and 8% w/v zirconia nanoparticles, respectively. After analyzing the sample surfaces, the antibacterial effect of the specimens was evaluated using Streptococcus mutans. Statistical analysis was performed using Tukey's test and Mann-Whitney U-test, according to the normality result in the Shapiro-Wilk test. Results: FE-SEM and EDX analyses revealed the successful addition of zirconia nanoparticles. Results showed no significant difference in the measured values for surface roughness and contact angle between the experimental and control groups; however, adhesion and biofilm thickness of S. mutans were significantly decreased in Group Z2, Group Z4, and Group Z8 compared to the control group (P < 0.05, P < 0.01, P < 0.01, respectively). Conclusion: The addition of zirconia nanoparticles can lower the incidence of adhesion and biofilm thickness of S. mutans on PEMA resin used for provisional crowns. Thus, incorporating zirconia nanoparticles in repair materials for provisional crowns and PEMA resin can produce an antibacterial effect and prevent gingivitis, periodontal disease, and dental caries.


Asunto(s)
Caries Dental , Gingivitis , Nanopartículas , Enfermedades Periodontales , Humanos , Metacrilatos , Circonio/farmacología , Antibacterianos/farmacología , Resinas de Plantas , Coronas , Ensayo de Materiales , Propiedades de Superficie
9.
Int J Nanomedicine ; 16: 7307-7317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737568

RESUMEN

PURPOSE: This paper presents a technique for developing a novel surface for dental implants using a combination of nitriding and anodic oxidation, followed by the deposition of graphene oxide using atmospheric plasma. The effects of various surface treatments on bacterial adhesion and osteoblast activation were also evaluated. METHODS: CP titanium (control) was processed into disk-shaped specimens. Nitriding was conducted using vacuum nitriding, followed by anodic oxidation, which was performed in an electrolyte using a DC power supply, to form the novel "mulberry surface." Graphene oxide deposition was performed using atmospheric plasma with an inflow of carbon sources. After analyzing the sample surfaces, antibacterial activity was evaluated using Streptococcus mutans and Porphyromonas gingivalis bacteria. The viability, adhesion, proliferation, and differentiation of osteoblasts were also assessed. Analysis of variance (ANOVA) with Tukey's post-hoc test was used to calculate statistical differences. RESULTS: We observed that the mulberry surface was formed on samples treated with nitriding and anodic oxidation, and these samples exhibited more effective antibacterial activity than the control. We also found that the samples with additional graphene oxide deposition exhibited better biocompatibility, which was validated by osteoblast adhesion, proliferation, and differentiation. CONCLUSION: The development of the mulberry surface along with graphene oxide deposition inhibits bacterial adhesion to the implant and enhances the adhesion, proliferation, and differentiation of osteoblasts. These results indicate that the mulberry surface and graphene oxide deposition together can inhibit peri-implantitis and promote osseointegration.


Asunto(s)
Morus , Nanoporos , Grafito , Osteoblastos , Propiedades de Superficie , Titanio
10.
Int J Nanomedicine ; 16: 5745-5754, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34471350

RESUMEN

OBJECTIVE: To determine the effects of graphene oxide (GO) deposition (on a zirconia surface) on bacterial adhesion and osteoblast activation. METHODS: An atmospheric pressure plasma generator (PGS-300) was used to coat Ar/CH4 mixed gas onto zirconia specimens (15-mm diameter × 2.5-mm thick disks) at a rate of 10 L/min and 240 V. Zirconia specimens were divided into two groups: uncoated (control; Zr) group and GO-coated (Zr-GO) group. Surface characteristics and element structures of each specimen were evaluated by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and contact angle. Additionally, crystal violet staining was performed to assess the adhesion of Streptococcus mutans. WST-8 and ALP (Alkaline phosphatase) assays were conducted to evaluate MC3T3-E1 osteoblast adhesion, proliferation, and differentiation. Statistical analysis was calculated by the Mann-Whitney U-test. RESULTS: FE-SEM and Raman spectroscopy demonstrated effective GO deposition on the zirconia surface in Zr-GO. The attachment and biofilm formation of S. mutans was significantly reduced in Zr-GO compared with that of Zr (P < 0.05). While no significant differences in cell attachment of MC3T3-1 were observed, both proliferation and differentiation were increased in Zr-GO as compared with that of Zr (P < 0.05). SIGNIFICANCE: GO-coated zirconia inhibited the attachment of S. mutans and stimulated proliferation and differentiation of osteoblasts. Therefore, GO-coated zirconia can prevent peri-implantitis by inhibiting bacterial adhesion. Moreover, its osteogenic ability can increase bone adhesion and success rate of implants.


Asunto(s)
Antiinfecciosos , Implantes Dentales , Proliferación Celular , Grafito , Osteoblastos , Osteogénesis , Propiedades de Superficie , Titanio , Circonio
11.
J Adv Prosthodont ; 13(2): 71-78, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34025955

RESUMEN

PURPOSE: This study aims to compare the volumetric change, degree of conversion (DOC), and cytotoxicity of 3D-printed restorations post-cured under three different conditions. MATERIALS AND METHODS: 3D-printed interim restorations were post-cured under three different conditions and systems: 5 min, 30 min, and 24 h. Three-unit and six-unit fixed dental prostheses (n = 30 for each case) were printed; ten specimens from each group were post-cured and then scanned to compare their volumetric changes. Root-mean-squared (RMS) values of the data were acquired by superimposing the scanned files with original files. Thirty disk-shaped specimens were printed to evaluate the DOC ratio. Fourier transform infrared spectroscopy was used to compare the DOCs of 10 specimens from each group. Human gingival fibroblasts were used to measure the cell viability of every specimen (n = 7). The data from this experiment were employed for one-way analysis of variance and Tukey's post-hoc comparisons. RESULTS: Differences between the three-unit restorations were statistically insignificant, regardless of the post-curing conditions. However, for the six-unit restorations, a high RMS value was acquired when the post-curing duration was 30 min. The average DOC was approximately 56 - 62%; the difference between each group was statistically insignificant. All the groups exhibited cell viability greater than 70%, rendering them clinically acceptable. CONCLUSION: The post-curing conditions influenced the volume when the length of the restoration was increased. However, this deviation was found to be clinically acceptable. Additionally, post-curing did not significantly influence the DOC and cytotoxicity of the restorations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...